
DRAFT, SEPTEMBER 2019 1

Driver Identification based on GPS trajectories
Sasan Jafarnejad, German Castignani, and Thomas Engel,

Abstract—Connected vehicles and new paradigms in the mo-
bility sector have recently pushed forward the need for accurately
identifying who is behind the steering wheel on any driving
situation. Driver Identification becomes part of a building block
in the mobility area to enable new smart services for mobility like
dynamic pricing for insurance, customization of driving features
and pay-as-you-drive services. However, existing methods for
driver identification depends on complex and high sample-rate
vehicle data coming either from CAN-bus or from external
devices. In this paper we propose to explore the potential for
high accuracy driver identification with low-cost and low-sampled
data, mainly GPS trajectories. Using a deep-learning based
approach, we obtain overall error-rate of 1.9, 3.87, 5.71, 9.57,
13.5% for groups of 5, 10, 20, 50, 100 drivers. The results show
outstanding accuracy and performance, enabling a fast and low-
complex deployment.

Index Terms—Driver identification, Deep Learning, Telematics,
Driver profiling.

I. INTRODUCTION

IN the last years, driver Identification (ID) has gained
popularity in the research community. This rise can be

partially attributed to the ongoing transition of the mobil-
ity eco-system. People is now switching the traditional car-
ownership model to a panoply of shared-mobility offers,
including car-sharing, car-pooling, ride-hailing or short-term
leasing, among others. In parallel, car manufacturers have
been increasingly introducing car connectivity to even low-
cost models, which has enabled substantial amount of car data
available for research. This combination of facts enables new
tailor-made mobility products with dynamic pricing, fraud-
detection and automated claim management, for which driver
ID becomes a crucial component. Also, on the big fleets
area, in many countries, long haul truck drivers are by law
required to take regular breaks and conform to maximum daily
driving hours. However this is not being properly enforced,
since traditional systems based on driver ID using smart-cards
or another physical component is exposed to high level of
fraud. Although research exists on this topic little is known
whether stakeholder companies are actually deploying these
solutions. Most recent research has dealt with the data from
CAN-bus with high sampling rates, sometimes attained in
unrealistic scenarios such as using external sensors. These
solutions require specific hardware, powerful processors, and
high data rate, which limits their deployability. There is then
a concrete need for driver ID methods that are not hardware-
dependant and that can guarantee high accuracy even with
low-rate data, which minimizes communication and storage
costs. In this context, we consider in this paper the scenario
of having location-data only of vehicles, and we investigate
whether this low-sample rate location data is sufficient for
identifying drivers or not.

Driving data is inherently heterogeneous. Existing driver
ID models in the literature only cover one aspect of driving
data, i.e., the variability of vehicle dynamics (including speed,
acceleration, etc.). In this paper, we provide with a method that
relies only on GPS data and succeeds in accurately identifying
the driver. Although we use an external web service to extract
contextual metrics from the locations, our method stands as
an end-to-end driver ID solution. In particular, we present
an efficient way of encoding location coordinates and road-
network links using embeddings to be used in deep neural
network (DNN) models. We evaluate our proposed method
using a large set of driving data covering thousands of different
drivers being active for up to more than one year in the Greater
Region of Luxembourg. Results presented outperform state-of-
the-art driver ID methods.

The remainder of this paper is organized as follows. In
Section II we present a complete taxonomy of the related work
in the topic. Section III introduces and characterizes the data
set used in this study. Section IV goes into the details of the
proposed methodology. Section V describes the experimental
setup and the baseline methods used for comparison. Then in
Section VI we introduce the experimental setup and results.
Finally in Section VII we conclude the paper and present the
perspective of the future work.

II. RELATED WORK

There is a large body of research on driver ID, showing
different goals and technical approaches. Traditionally biomet-
ric identifiers are the first to come to mind when we talk
about popular techniques for identifying individuals. These
are systems that employ personal traits, such as fingerprints,
retina scans, voice or facial features for identification. Bio-
metric methods are mature technologies, but they come with
some limitations. As an example, a facial recognition system
requires installation of a camera pointing to the driver, which
will raise privacy concerns. Similarly, fingerprint scanners has
been shown susceptible to copy. In [1] authors propose to
install sensors inside the driver seat to ID drivers based on
their posture and body structure, a part from the high costs,
drivers find these sensors extremely intrusive. Even if we
accept the risks and discomfort, wide deployment of such
systems is in general costly and cumbersome to maintain.
Therefore we think the focus should be on driver ID based
on driver behavior.

Driver behavior refers to anything driver does during the
act of driving which is measurable; Whether it is direct driver
input, such as pedal operation or steering, or inferred data,
like vehicle dynamics, such as acceleration patterns or speed
profiles. Or even higher level features such as the ratio by
which a driver exceeds the speed limit (speed

speed limit).

DRAFT, SEPTEMBER 2019 2

0 250 500 750 1000 1250 1500
count trips

0

50

100

150

200

250

300

350

(a) Histogram of number of trips per driver.

0 10 20 30 40 50 60 70 80
trip length [km]

0

10000

20000

30000

40000

50000

(b) Histogram of trip lengths.

0 100 200 300 400 500 600
active period [days]

0

20

40

60

80

100

120

(c) Histogram of driver activity period.

Figure 1. Data set plots

Table I
FEATURES

Metric Continuous Categorical Sequential Description

Te
m

po
ra

l Day of week - 1 (7) -
Hour - 1 (24) -
Minute - 1 (4) - binned into 4 quarters
Temporal exposure 3 - - Slight, Serious, Fatal
Peak-hour - 1 (2) - If trip took place at peak hour.
Total time (s) 1 - - Duration of the trip
daytimeproportion 1 - - Daytime Proportion of trip

B
eh

av
io

ra
l RPA 1 - - Relative positive acceleration

Steering 1 - - High, Low
Brake & Acceleration 4 - - High, low
Acc./decelleration g-force 6 - - Max, min and average of acceleration or decelleration g-force
Count illegal actions 3 - - turn, u-turn, direction
Average overspeed 3 - - -, curves, traffic

Sp
at

ia
l

Lat./Lon. of trip start/end 2 × 2 2 × 2 (∼ 4k) - Latitude and longitude of start and end of trip
Link IDs - - varies Sequence of links traversed during a trip
Bearing 1 - -
Distance 2 - - Haversine & Manhattan distance between start and end of trip
Distance (km) 4 - - Distance travelled in motorway, rural, urban areas and their total
Count of road features 4 - - Bridges, Tunnels, Urban Areas, signals, POIs
Proportion (distance) 3 - - Proportion of distance traveled through motorway, urban and rural areas
Proportion 5 - - FC1, FC2, FC3, FC4, FC5
Proportion 6 - - express-highway, motorway, highway, urban, interurban, unclassified
Border crossing 1 - - Number of times driver crosses the border
Number of traffic signs 6 - - Priority, yield, stop, lane-merge, pedestrian, overtaking
Count of road object 3 - - Bridges, roundabouts, tunnels
Count of location data points 2 - - Total count, valid count
Speed in traffic 1 - - Driving speed in relation to traffic
Time in traffic 1 - - Time spent in congested traffic

In the literature, methods are mainly based on techniques
relying in two categories of data, 1) Car data, often with high
sample-rate and large number of features. This kind of data is
usually collected from CAN-bus, using OBD-dongles, black-
boxes or external sensors. 2) Location data provided by global
navigation satellite systems (GNSSs). Usually lower sample-
rate and noisy data which can be provided by smartphones,
car-navigation system or external receivers. Automotive man-
ufacturers have access to both these data categories, some
even provide Application programming interfaces (APIs) to
third-parties to access such data. Although Original equipment
manufacturers (OEMs) can use the high sample-rate data
internally, third parties can only access low sample-rate data.
This is mainly due to data transmission and storage costs. In
the near future, third party providers may get access to car
data for applications that are deployed on car-infotainment
systems, perhaps through Android Auto or Apple CarPlay. As
an example, Daimler has recently launched a platform going

into this direction1.
A large portion of the driver ID literature is focused on car

data. In [2] authors explore use of physical driving models,
and Gaussian Mixture Model (GMM) for driver ID. They
apply these methods to behavioral signals collected from a ”car
following” task. Signals such as gas and brake pedal position,
vehicle speed and the following distance (FD) (distance to
the leading vehicle). They observe that GMM performs better
than the physical models. [3] propose use of GMM to model
distribution of cepstral features extracted from pressure sensors
retrofitted under the pedals. Cepstral features, especially Mel-
frequency cepstral coefficient (MFCC)s are widely used in
speech/speaker recognition field. [4] uses similar features but
instead use extreme learning machine (ELM) model.
Although these works achieve fair results, they are not practi-
cal, mainly because production vehicles are not equipped with
pressure sensors under the pedals. To get closer to a practical
solution [5] use signals from standard vehicle sensors, such as

1https://developer.mercedes-benz.com/apis

DRAFT, SEPTEMBER 2019 3

Percentage Gas Pedal (GP) and Steering Wheel Angle (SW).
They show that cepstral coefficients of SW are also important
discriminators and can be used for driver ID, this effect is even
more evident when the driver ID is being performed on a larger
group of subjects. In [6], the authors obtain high accuracy on
driver ID by taking advantage of three factors: 1) A wide set
of signals with high sampling rate (60Hz), 2) a comprehensive
set of spectral and statistical features, and 3) a set of Machine
learning (ML) models. However they also show that brake
pedal is the best discriminator signal and solely using it one
can accurately identify unique drivers in a population of up to
15 drivers.
More recent works [5], [6] often use ML methods such as
Support Vector Machine (SVM), Random Forest (RF) or
Boosting trees. Such methods are often trained in a one-versus-
all fashion. This means that for each class (driver) a model that
discriminates that driver from the rest is fitted. The approach
has a big disadvantages and presents poor scalability, because
every-time a driver is added to the system all the models are
needed to be re-trained. In [7], the authors show that GMM
fitted on spectral features of both gas pedal and steering wheel
can perform well, with as little as five minutes of training data
per driver. It is also scalable, since the addition of new drivers
only requires fitting a GMM to the new driver’s driving data.
There are other works that look at more particular situations,
for example [8], which creates a profile for each driver based
on the sequence of the actions they take before they begin
to drive. They test this method on two groups of people, and
achieve good accuracy. While manufacturers have access to
sensors needed to implement such approach, its solution is
highly vehicle-specific and difficult to deploy by third parties.
Moreover, it is not difficult to behave similarly than someone
so as to imitate the sequence of actions before driving. In [9]
the authors focus on the possibility of driver ID using only
single turn maneuvers. Although they do not achieve high
accuracy they show that even in one single turn event there is
enough information to discriminate between the drivers (even
with limited confidence).

There are a few works that focus on location data. [10] uses
location and accelerometer data to identify family members.
They use location data to construct clusters of locations, and
used the origin and destination clusters as a feature, among
other features such as excessive manoeuvres extracted from
accelerometer, weekday, departure time and trip duration. Then
they used conventional ML algorithms to identify the driver,
and achieved accuracy of about 70%. In [11], although the
authors’ focus is behavior change from riskiness aspects, they
informally perform driver ID. They use a large dataset of
3000 drivers provided by an insurance company, that contains
location and accelerometer data. They train a classifier to
classify drivers as themselves, a risky driver or a safer driver.
In the training process they sample 40 safe and risky drivers
(to represent each class) and use their trip as proxy for
risky or safe driving. From location data, they only use over-
speeding events and the rest of the features are obtained by
binning (thresholding) the accelerometer data. Chowdhury et
al. [12] focus only on location data collected from smartphone,
they estimate many secondary signals from speed and head-

Driver

TripMetric

Link

Location

Attribute

Map-matching

Contextualizer

1
n

1n

n

n

1

1
1

1

Figure 2. Data set model

ing (e.g. jerk, lateral acceleration, and longitudinal acceleration
etc.). They compute 137 statistical features per trip and use a
RF classifier to identify the drivers. For groups of 4 to 5 they
obtain accuracy of 82.3% on average.

III. DATASET

In this work we use a dataset provided by Motion-S SA.
During a data collection campaign, more than ten thousand
participants downloaded a gamified smartphone application
to provide driving behavior tips, in exchange of receiving
feedback on their driving behavior (riskiness factors) and a
chance to win a prize. The participants have been collecting
driving data in the background by detecting car start and stop
using Bluetooth connection events with their car infotainment
system. We refer to such a recording session as a trip.
Conceptually a trip could be a commute to work-place or back,
visiting the doctor’s office, or going to the mall for shopping.
Additionally there are times that the participant either disables,
or chooses not to record certain trips, for any possible reason.
During a trip, the app records timestamped locations updates
every second. At the end of each trip or whenever the Internet
connection is available the data gets uploaded to a remote
server. A location update, is comprised of latitude, longitude,
altitude, speed, bearing and estimated accuracy. The dataset
used for this study is free of all personally identifiable and
quasi-identifiers, we only use a pseudo-identifier to keep track
of trips that belong to a lambda individual.
Each trip is a sequence of timestamped location data. After
collection, location data are contextualized using Here.com2

maps layer for map-matching and data augmentation. Map-
matching is a process that associates a latitude, longitude
coordinate to a segment of road network, which we call a
link and is represented by a unique integer identifier. The data
augmentation process is able to provide a wide spectrum of
attributes that characterize a particular link, e.g., slope, speed
limit, administrative region, country, road roughness, points
of interest, traffic signals or whether it is a tunnel or bridge.
After obtaining link attributes we compute additional features
(metrics), e.g., speeding ratio, acceleration and steering. An
overview of these features are listed in Table I.

2Here.com https://api.here.com

DRAFT, SEPTEMBER 2019 4

The dataset used in this paper contains heterogeneous vari-
ables describing many aspects of each trip. For that reason, in
order to improve their understanding, we propose to categorize
the features from two perspectives: semantic and technical.
The semantic perspective is related to the nature of the metric
while the technical perspective is related to the expected type
of output for that particular feature.

A. Semantic categorization of features

The act of driving implies that an individual is driving in
a certain place, at a certain point of time and behaving in a
certain manner.Then, semantically categorize the features as
follows:

Temporal: Features that are derived from the date and time
of the collected locations of trip.

Spatial: Features that are merely derived from specific
location coordinate and the route taken by the driver.

Behavioral: All the other features, these are features that
are to some extents a function of driver, such as steering and
acceleration patterns, etc..

Note that this categorization is somewhat arbitrary. One
could argue that the hour trips are performed should be
considered behavioral because it is driver’s choice. Since our
focus is driver ID and its applications, there are use-cases
that cannot depend on every feature categories. For example
in case of long haul truck drivers, if the truck is driven by
an illegitimate driver, since the destination and likely the
route does not change, we cannot rely on spatial or even
temporal features, therefore behavioral features are our only
chance to be able to discriminate the two drivers. Semantic
categorization of the features is indicated on the left side of
the Table I.

B. Technical categorization of features

The technical categorization refers to the expected output
type, because every data type requires an appropriate model.
There are three types of features that we are concerned with:
1) continuous 2) categorical 3) sequential.

Continuous features: As presented earlier, for every trip, a
number of metrics is computed. We can represent real valued
feature as X ∈ RM×N , where M is number of trips and N
is number of features. The continuous features are scaled as
below:

Xn =
Xn −mean(Xn)

std(Xn) (1)

mean(Xn) is the mean of the nth dimension of the X across
all trips of all drivers.
std(Xn) is the standard deviation of the nth dimension of the
X across all trips of all drivers. Number of continuous features
per metric is indicated in continuous column of Table I.

Categorical: these features, even though often represented
as an integer type, their numerical value carries little or no
meaning. For example we treat hour as a categorical feature,
because the hours 23 and 0 even though they are farthest apart
among hours of day, they both represent midnight hours. Other

Figure 3. Location cross feature

examples are day of week consisting of 7 categories or peak
hour having only two categories.
In particular, we propose to represent location coordinates of
origin and destination of a trip as a categorical feature. A
location coordinate consists of continuous values for longitude
and latitude, X = (lon, lat), where X ∈ R2. However, we can
also treat them as a cross feature, by binning the latitude and
longitude in a grid on the map (see Figure 3). In this work we
bin the coordinates to 0.003°. To do so, we assign a unique
number to each cell in the grid n ∈ N. Trip origin an desti-
nation coordinates are then mapped to the correspondent cell
identifier X 7→ N, therefore every coordinate is represented by
an integer. . The number of categorical features are indicated
in categorical column of Table I, the number of categories are
indicated between parentheses.

Sequential: The only sequential feature we consider is the
sequence of links taken by the driver. As described earlier in
this Section each location is mapped to a link. In other words
this is a sequence of categorical features. We drop the repeated
consecutive links but still the length of the sequence varies and
is trip dependent.

Table II
DATASET STATISTICS

metric pre-processing
before after

Number of drivers 1385 678
Average trips per driver 261.51 297.06
Total trips 362198 201410

C. Pre-processing

To ensure quality, we filter the dataset according to the
following heuristics. Short trips are often faulty and do not
contain enough information to be useful therefore the trips
shorter that five minutes are removed. Moreover since we
calculate the trip-length as the difference between trip-start
and trip-end timestamps. There are times that although the
length is over five minutes, the trace is faulty and contains
few location data points, to filter such instances we also drop

DRAFT, SEPTEMBER 2019 5

Sequential

Continuous

Categorical

Embedding RNN

Embedding RNN Concat FC Softmax Aux Out 1

Embedding 1

Embedding 2…

Embedding N

Concat FC Aux Out 2Softmax

Concat FC FC Softmax OutputFC FC

end seq.

start seq.
Sequential module

Categorical module

Continuous module

Figure 4. Architecture diagram

trips with 100 or fewer data points. Trips having constant speed
is another pattern observed among faulty trips, so we decide
to remove them from the dataset. We filter out cross-border
or trips taking place outside Luxembourg territory. Lastly, we
exclude drivers that have fewer than 50 trips in their records.
Table II shows a summary of dataset statistics before and after
pre-processing. There are initially 1385 drivers in our dataset
with each from 13 to 5066 trips they total at 362198 trips,
after pre-processing the number of distinct drivers reduces to
678 and a total of 201410 trips.

IV. METHODOLOGY

The goal of driver ID is to associate a driving trip or its
representation x to its actual driver c from a known set of
drivers (C). We propose in this paper to model the driver
ID task as a supervised classification problem. Therefore we
assume information on all possible targets, which is also
known as a closed-world scenario, assuming that all examples
are from classes in our training data set. We choose a Deep
learning (DL) approach to tackle the problem. The motivation
behind this decision is the ability of simultaneous handling of
multiple data types. Moreover due to its modular design, more
inputs of any kind can be easily added to the model.

The main challenge of this scenario is to handle sparse and
high dimensional categorical data. We have two instances of
such data, links and location cross features. For instance, only
in Luxembourg (where main part of our data is coming from)
there are about 60 thousand links. Categorical data is generally
encoded using one-hot scheme, which for a feature with n
values creates a n-dimensional vector, when having features
with categories in orders of thousands, one-hot encoding is not
effective. To tackle the issue of high dimensionality we use a
similar technique as word embedding [13]. Word embedding
is a technique used in natural language processing (NLP) that
maps vocabulary to vectors of real numbers. We apply this
technique to every categorical feature. As an example, we
consider links to describe the method more in detail.

We can represent a trip as a sequence of links traversed,
U = {u1, . . . ,uL}, where ul is a one-hot vector in space ∆D

representing link, D is total number of links in our covered
region and L is the number of links in the trip. Since D
is large, learning in ∆D space is computationally expensive.
Therefore we map links into an embedding space. We call
this link embedding, which is semantically similar to word
embedding, ∆D 7→ RP , where P is the dimension of embed-
ding space that can be between 32 to 128 depending on the
hyper-parameters. After applying the map flink emb : U 7→ V ,
becomes V = {ν1, . . . ,νL}, where νl ∈ RP . In practice this
mapping is either pre-trained (like word vectors used in NLP)
or learned jointly with the model, we chose the latter because
due to relatively small amount of training data, learning an
embedding jointly with model allows us to learn an embedding
specialized to discriminate between drivers. On the other hand
we hypothesize learning a pre-trained embedding on a large
corpus (millions of trips) that is then fine-tuned for target
drivers should improve the generalization and even reduce the
amount of data needed for training, due to lack of sufficient
data we leave this for future work [14].

We can use a similar mapping for any other categorical data,
with the difference that P should be chosen proportional to
the number of categories of the feature.

A. Neural network architecture

We propose a DNN architecture that consists of three
modules, each with a different feature vector, continuous,
categorical, sequential. Figure 4 illustrates the proposed ar-
chitecture.

Sequential module: The upper part of Figure 4 models the
link sequence, which is the only sequential feature we consider
in this work. Since the origin and destination of a trip has
the highest importance, and also to avoid having to handle
long sequences of variable length we decided to model the
beginning and end of a link sequence separately. We introduce
a hyper-parameter ρ that determines the length of the origin
and destination sub-sequences. Denoting L as length of link
sequence, if L < 2ρ these sub-sequences may overlap and
if L < ρ the rest of the sub-sequence is filled with zeros.
Each sub-sequence is passed through an embedding layer,

DRAFT, SEPTEMBER 2019 6

Table III
SUMMARY OF MODEL PARAMETERS FOR AN EXAMPLE EXPERIMENT WITH

50 DRIVERS. AUXILIARY OUTPUTS ARE OMITTED.

Module Layer Kernel, Bias # params

Sequential recurrent gru orig (3,128),(128,) 98688
Sequential recurrent gru dest (3,128),(128,) 98688
Sequential embed link (29166, 128) 3733248
Continuous cont dense 1 (72, 256),(256,) 18688
Continuous cont dense 2 (256, 128),(128,) 32896
Categorical embed location (8201, 96) 787296
Categorical embed minute (4, 6) 24
Categorical embed hour (24, 12) 288
Categorical embed dayofweek (7, 8) 56
out branch out dense 1 (602, 512),(512,) 308736
out branch out dense 2 (512, 128),(128,) 65664
out branch out dense 3 (128, 50),(50,) 6450

these layers share their weights. The embedding vectors are
initialized randomly and then trained to minimize the loss
function. We feed the embeddings to the recurrent neural
network (RNN). We experiment with long short-term memory
(LSTM) and gated recurrent unit (GRU) cells [15], [16]. Then
the output from two RNN units is concatenated and merged
back to the main network. We also branch out an auxiliary
output (aux out1), which consists of a fully-connected layer
with Softmax activation function.

Categorical module: For each categorical variable we create
an embedding, the dimensions of this embedding is pro-
portional to the number of categories in the variable. It is
calculated using the Equation 2 for each categorical feature:

embed dim = min((dlog2(vocab size)e+ 1) ∗ κ, 50) (2)

where vocab size is the number of categories and κ is a hyper-
parameter. The resulting embeddings are then concatenated
and passed through a fully-connected layer with rectified linear
unit (ReLU) activations and merged back to the main branch.
Similar to sequential branch to facilitate learning, we also
branch out an auxiliary output using a fully-connected layer
and a softmax.

Continuous module: The continuous branch is the main
branch. All the continuous features are fed into two fully-
connected layers and then the other two branches are
merged (concatenated) in it. Then they are followed with
two other fully-connected layers, a softmax activation. We
concatenate outputs from these modules and feed them into
two dense layers with ReLU activation functions, followed by
a drop-out layer. Softmax function is applied to the output of
the last drop-out layer.

Since we jointly train all modules to facilitate learning
process we branch out auxiliary outputs from sequential and
categorical modules, indicated as aux out 1 and 2 in Figure 4.
Our goal is to minimize the error:

min
f∈F

1

N

N∑
n=1

J (yn, f(Xn)) (3)

where y is the target (correct driver) and x is the input feature

vector and J measures the loss, when having one output.

J = − 1

N

N∑
i=1

log pmodel[yi ∈ Cyi
] (4)

We adjust J to accommodate the auxiliary outputs.

J = − 1

N

N∑
i=1

∑
k∈outs

ωk(log pk[yi ∈ Cyi
]) (5)

Where ω is the output weight and outs consists of all outputs
{main out, aux out1, aux out2}, we assign weight 1 to the
main output and 0.2 to the auxiliary outputs.

V. EXPERIMENTAL SETUP

We evaluate the performance of the proposed model with
real-life applications in mind. We consider scenarios with |C|∈
{5, 10, 20, 50, 100} drivers. Our data set contains 678 drivers,
however each driver has different number of trips and their
trip composition, driving style varies. To cover a representative
sample of drivers we repeat experiments for every c ∈ C, 30
times, each time with another random (no replacement) sample
of drivers. This will also account for the case that drivers in
a certain sample may be easy or difficult to discriminate.

Moreover in order to tackle the class imbalance in our data
set, for every sampled driver, regardless of their number of
trips, we randomly sample 200 trips (with replacement). This
will lead to up or down sampling depending on how many trips
a driver has in the data set. We split the 200 trips into training
and validation sets in a 90%-10% ratio. Since the examples
sampled for each experiment are balanced we use the accuracy
as the evaluation metric:

acc =
1

N

N∑
i=1

1(yi = ŷi) (6)

where 1 is the indicator function, ŷi and yi are respectively
predictions and true driver for the ith trip. Since for most
experiments accuracy is close to 1 to improve readability we
use the error-rate (1 − acc). For each experiment we report
the average and standard deviation of the error-rate across
repetitions.

The neural network model is implemented using the func-
tional API of Keras [17] with Tensorflow backend [18]. For
training we used, batch size of 64 per GPU and optimized the
model with Adam optimizer [19] for 50 epochs. The model
often reaches the lowest error-rate in 20 epochs. We stored
the model parameters at each epoch, and later picked the
parameters with the best score on the validation set.

A. Hyper-parameter search

DL architectures have large number of hyper-parameters and
the search space to find the optimal architecture is compu-
tationally expensive to cover. To find hyper-parameters that
perform well we break the network down to its modules. For
each module we perform a separate hyper-parameter search
then we use the optimal parameters for the full module. Clearly
with this approach we will not obtain the optimal parameters,
but it should be give us a close approximate. The full set of

DRAFT, SEPTEMBER 2019 7

Table IV
HYPER PARAMETERS OF THE MODEL

Module hyper-parameter candidate values

Sequential

link embeddings {32, 48, 64, 96, 128}
recurrent unit {GRU, LSTM}
recurrent hidden units {64, 96, 128}
recurrent dropout rate {0.0, 0.3, 0.5}
ρ (sequence length) {10, 15, 20, 30}
fully connected {[256, 128], [128, 64],

[256], [128]}

Continuous fully connected {[512, 256], [256, 128],
[128, 128], [128, 64]}

dropout rate {0.1, 0.3, 0.5}

Categorical location embedding dims. {32, 48, 64, 96, 128}
κ (embedding coeff.) {1, 2, 3}

hyper-parameters we experimented with is given in Table V-A
and the best performing parameters are indicated in boldface.
We performed hyper-parameter search only over one set of
randomly selected 50 drivers.

B. Baseline algorithms

Since there are no other works that we could directly
compare our approach with, we introduce two baseline algo-
rithms. The first model is LightGBM and a hidden Markov
model (HMM) based model, to have a reference for the
sequential module of our architecture. We also consider a meta
model consisting of a combination of the two baselines as a
comparable contender for our proposed DNN architecture.

1) LightGBM: LightGBM is a variation of gradient boost-
ing decision tree (GBDT) and the state-of-the-art algorithm
for structured data [20]. Although LightGBM can process
categorical data it cannot process sequential data, therefore
we do not use the sequence of links with this classifier. We
use the following hyper-parameters:

• learning rate=0.1
• max depth=30
• min data in leaf =20
• num leaves=50
• num˙round=500

the hyper-paremeters were selected after running an extensive
hyper-parameter search.

2) Hidden Markov model: To set a baseline for the recur-
rent module of our model, we use a sequence model based
on HMM. We adapt the approach used in [21] to our driver
ID application. In that work the assumption is that the trips
are clustered in advance according to trip destination. Their
goal was to predict the destination by identifying the cluster
(hidden state). We consider the hidden state to be the driver,
therefore our equivalent of the cluster is the driver. The model
makes use of link-driver co-occurrence matrix F . F ∈ Nm×n

where Fi,j is count of times driver j ∈ C in traversed link
i ∈ L.
Having constructed F , we can compute p(l|C = c) and

p(C = c|l) for any given driver (c) and link (l) by employing
the Equations 7 and 8.

p(l|C = c) =
#trips traversing l by driver c

trips by driver c

=
Fl,c∑m
i=1 Fi,c

(7)

p(C = c|l) =
#trips traversing l by driver c

trips passing via l

=
Fl,c∑n
j=1 Fl,j

(8)

Algorithm 1 shows how we perform the prediction. Pi repre-
sents likelihood of driver i being the actual driver. Normalize
is a routine that normalizes every Pi to be a valid probability.
T is total number of links in trip. It is possible that driver
crosses a link that she never has or there could be a mistake
in map-matching, to avoid getting zero probability for correct
driver, the constant r is introduced alleviate this problem.

Algorithm 1 Driver prediction with drivers as hidden states
1: n← |C|
2: k ← 1
3: r ← 0.1
4: for i ∈ C do
5: Pi ← p(C = i|l1)
6: end for
7: while k ≤ T do
8: for i ∈ C do
9: Pi ← Pi · p(lk+1|C = i)

10: end for
11: normalize(Pi)i∈C
12: for i ∈ C do
13: Pi ← r

n + (1− r)Pi

14: end for
15: k ← k + 1
16: end while
17: return arg maxi∈C Pi

3) Combined model: We also evaluate the performance of a
combined model of RF and the HMM model. We take a linear
combination of their output probabilities and use the resulting
probabilities for prediction. We introduce a hyper-parameter α
to be able to adjust the contribution of each model. Equation 9
demonstrates this:

ŷ = arg max
c∈C

{αhLightGBM (X) + (1− α)hHMM (X)} (9)

where hLightGBM and hHMM are the LightGBM and HMM
models and X is trip feature vector. Through experimentation
we find the optimal value of α to be 0.7, and this is a setup
that we used in our evaluations.

VI. EXPERIMENTAL RESULTS

In this section presents the experiments performed and their
results. We compare the proposed DNN architecture with
baseline methods. Then we evaluate the effect of various
combinations of semantic feature categories to simulate how

DRAFT, SEPTEMBER 2019 8

5 10 20 50 100
of drivers

0.0

0.1

0.2

0.3

0.4

0.5
Er

ro
r r

at
e

Algorithms
LightGBM
HMM
Combined
DNN

(a)

drivers Baselines DNNLightGBM HMM Combined

5 0.0704 (0.035) 0.138 (0.059) 0.0759 (0.04) 0.019 (0.016)
10 0.0905 (0.027) 0.211 (0.051) 0.0854 (0.024) 0.0387 (0.018)
20 0.0972 (0.015) 0.281 (0.048) 0.0915 (0.015) 0.0571 (0.016)
50 0.13 (0.016) 0.38 (0.035) 0.123 (0.015) 0.0957 (0.015)
100 0.166 (0.02) 0.471 (0.028) 0.159 (0.019) 0.135 (0.016)

(b)

Figure 5. Algorithm error-rate in graphical (a) and tabular form (b)

the model would perform for various use-cases. We investigate
the effectiveness of using the cross features. And lastly we
investigate the effect of amount of training data on prediction
performance.

A. Comparison with baselines

In this experiment every algorithms is fed the same data
sets and the only difference is in the features which is an ar-
tifact of inherent differences between the models. Particularly
LightGBM model lacks the link sequence feature while HMM
model only has the link sequence as its input feature. Figure 5a
shows the error rates of the proposed model in compare to
baselines. LightGBM and HMM models perform similarly for
groups of 5 drivers, but as the number of drivers increase the
HMM model significantly deteriorates in performance. The
combined model as expected has lower error-rate for every
scenario than LightGBM or HMM models. We can also see
that the DNN model outperforms the baseline models in every
scenario.

B. Semantic feature categories

In this experiment we evaluate the importance the three
semantic feature categories that we introduced in Subsection
III-A. We compared all possible combinations of feature
categories. To depict the model performance under various
circumstances and applications. The corresponding results are
presented in Figure 7a both in graphical and numerical form.
We can clearly see that temporal features alone, perform the
worst with about 40% error rate for 5 drivers that increases
to 79.3% for 100 drivers, this shows that merely knowing
the time-of-day and day-of-week are not enough to discrim-
inate between drivers. Second best feature category is the
behavioral, it performs reasonably well for small number of
drivers (19% error-rate for 5 drivers) but as the number of

Table V
EFFECTIVENESS OF LOCATION CROSS FEATURES

drivers Experiment error-rate - mean (std.)
Full model Excl. cross features Excl. coordinates

5 0.019 (0.016) 0.0211 (0.02) 0.0218 (0.023)
10 0.0387 (0.018) 0.0456 (0.02) 0.0422 (0.02)
20 0.0571 (0.016) 0.0663 (0.017) 0.0594 (0.015)
50 0.0957 (0.015) 0.115 (0.017) 0.0998 (0.017)
100 0.135 (0.016) 0.149 (0.017) 0.139 (0.015)

drivers increase the error rate also increases. Since behavioral
features are not directly route dependant, this shows promise
for applications such as such as theft detection or driver
verification, because error-rate would even decrease further
when trained used for smaller set of drivers. Spatial features
by far are the best category, they provide error-rate of orders
of magnitude lower than other feature categories, this is
justified because each person only travels to a limited number
of point of interests (POIs) and it is not difficult to learn
them. It is important to note that combinations of feature
categories always results in improved accuracy, this shows that
all the feature categories contribute to the predictions, but their
contribution is not equal. Since the contribution of temporal
feature category is small we could remove them from the
system without significant increase in error-rate, with nothing
to lose in terms of error-rate we gain in being more privacy
friendly.

0.00 0.01 0.02 0.03 0.04
Value

origin-longitude
origin-latitude

dest.-longitude
dest.-latitude

of links
avg. acceleration [g]

of speedings
avg. overspeed
speed in traffic

prop. FC5
Positive Kinetic Energy
avg. decceleration [g]

avg. overspeed in traffic
bearing

prop. FC2
haversine distance

max. acceleration [g]
of speedings in traffic

stopping events
prop. unclassified roads

Fe
at

ur
e

LightGBM feature importance

Feature category
Behavioral
Spatial

Figure 6. Top 20 most important features obtained from LightGBM classifier.

Figure 6 shows the top 20 features obtained from Light-
GBM model corresponding to a randomly selected experiment.
Although the order may not completely correspond to the
contribution of each feature to our DNN model it will help
to get an idea of the most important features. We can see
latitude and longitude of origin and destination constitute the
top 4 features. Then there are a number of behavioral features
such as a number of speeding related features and features
derived from acceleration patterns. The other group of features
are those reflecting the composition of the route taken by the
drivers, the distance and the number of links.

C. Effectiveness of cross features
We introduced location cross features in Section III-B

however knowing that in this work accurate origin and des-
tination coordinates are available, this approach may seem

DRAFT, SEPTEMBER 2019 9

5 10 20 50 100
of drivers

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Er
ro

r r
at

e
Feature set

T
B
S
TB
ST
SB
STB

(a) Feature Category Error rate plot

error rate
Feature set T B S TB ST SB STB# drivers

5 0.417 0.190 0.027 0.147 0.030 0.020 0.009
10 0.499 0.266 0.050 0.213 0.051 0.049 0.042
20 0.587 0.342 0.073 0.291 0.068 0.056 0.054
50 0.739 0.498 0.125 0.444 0.122 0.107 0.105
100 0.793 0.589 0.181 0.536 0.177 0.156 0.152

(b) Feature Category Error rate table

Figure 7. Feature Category Error rate

unnecessary. Consider the case accurate coordinates are not
available. This could be either due to lack of accurate data or
suppose due to privacy considerations a portion of beginning
and end of a trip is trimmed before upload to the server,
or perhaps differential privacy mechanisms are applied to
the data. Therefore in cases that we cannot rely on accu-
racy of location coordinates binning may provide a better
performance because we no longer assume that coordinates
are accurate measurements. To investigate effectiveness of
these features we compare the model performance under three
circumstances: 1) full model including both origin, destination
coordinates and cross features 2) full model excluding cross
features 3) full model excluding coordinates. The second
experiment will show whether addition of cross features in
presence accurate coordinates is unnecessary, and the third
case will examine whether the model can perform well in
absence of accurate coordinates.

Table V shows the results of the above-mentioned experi-
ments. We can see that for any number of drivers removing
the cross features will increase the error rate. This confirms
that cross features contribute toward better driver ID (about
10% reduction of error-rate in average for 100 drivers). In
absence of coordinates (3rd case) the model performs slightly
worse than the full model but better than the case without the
cross features, we believe this is due to superior generalization
capabilities of the embeddings.

D. Amount of training data

We investigate how the amount of training data affects
the model error-rate. We evaluate the model with L ∈
{50, 100, 200} trips. In these experiments each time we sample
drivers, for each driver we randomly sample L trips, and use
this data set for training and validation. The error-rate and its
standard deviation decreases inversely with L, however this

5 10 20 50 100
of drivers

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Er
ro

r r
at

e

of trips
50
100
200

Figure 8. Trip count error-rate

effect dampens as L increases. This has two explanations, 1)
There is only so much to learn, over that there are information
that the current model cannot learn. 2) We do not have equal
number of trips from each driver, it is possible the fact that
we sample the trips with replacement, negatively affects the
performance for the larger values of L.

VII. CONCLUSION

In this work we presented an end-to-end system for driver
ID. The input to the system is location coordinates correspond-
ing to a journey, sampled every second. This data is easy to
obtain, either through a Smartphone or from the car itself.
Recently more and more car manufacturers are providing
always on connection for their cars, that means they can send
data to their servers. More recently many companies such as
Mercedes Benz or BMW have provided API to access to such
data. The input is then augmented and contextualized using
an external service. The augmented features have various data
types, they include continuous and categorical values as well
as variable length sequential data. Our proposed system can
accept all the above mentioned features and ID the drivers.

We compare our system with three strong baselines and
outperform them. We argue that based on application use-
case it may not be desirable to use for example spatial
features, therefore we evaluate our method using different
feature sets; even without spatial features that are the best
performing category we obtain desirable performance only
using behavioural features (19% for 5 drivers). As an example
ride-sharing providers such as Uber or Lyft, can prevent fraud
and ensure passenger safety by using this system only with
behavioral features to verify driver’s identify and trigger more
reliable identification procedures. We also showed that our
method improves as more data is collected, which is an ideal
property for a system that is constantly collecting more data
as it is being used. We obtain overall error-rate of 1.9, 3.87,
5.71, 9.57, 13.5% for groups of 5, 10, 20, 50, 100 drivers
which shows a great promise and enables other applications
to be built on top of this system.

There are further steps that can be taken after this work. We
mentioned privacy issues and how cross features could help
hiding the accurate information on origin and destination of

DRAFT, SEPTEMBER 2019 10

trips, a follow up would be trimming for example the first and
last mile of each trip and observe its impact on the system.
To decrease the amount of data needed for training the neural
network one can explore pre-training link embeddings on a
large corpus or use techniques such as node2vec [22] that can
be applied to the road network. It is also worth exploring if it
is possible to learn directly from the location data for example
by applying 1d convolutional neural netowrks or RNNs to
longitudinal and lateral acceleration estimated from speed and
bearing.

REFERENCES

[1] A. Riener and A. Ferscha, “Supporting Implicit Human-to-Vehicle
Interaction: Driver Identification from Sitting Postures,” in Proceedings
of the First Annual International Symposium on Vehicular Computing
Systems. Dublin, Ireland: ICST, 2008.

[2] T. Wakita, K. Ozawa, C. Miyajima, K. Igarashi, K. Itou, K. Takeda, and
F. Itakura, “Driver identification using driving behavior signals,” IEICE
Trans. Inf. Syst., vol. E89-D, no. 3, pp. 1188–1194, mar 2006.

[3] C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, and
F. Itakura, “Driver modeling based on driving behavior and its evaluation
in driver identification,” Proc. IEEE, vol. 95, no. 2, pp. 427–437, feb
2007.

[4] M. V. Martı́nez, J. Echanobe, I. Campo, M. Martinez, J. Echanobe, and
I. del Campo, “Driver Identification and Impostor Detection based on
Driving Behavior Signals *,” 2016 IEEE 19th Int. Conf. Intell. Transp.
Syst., pp. 372–378, nov 2016.

[5] S. Jafarnejad, G. Castignani, and T. Engel, “Towards a Real-Time Driver
Identification Mechanism Based on Driving Sensing Data,” 20th Int.
Conf. Intell. Transp. Syst., no. October, p. 7, 2017.

[6] M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile Driver
Fingerprinting,” Proc. Priv. Enhancing Technol., vol. 2016, no. 1, jan
2016.

[7] S. Jafarnejad, G. Castignani, and T. Engel, “Non-intrusive distracted
driving detection based on driving sensing data,” in Proceedings of
the 4th International Conference on Vehicle Technology and Intelligent
Transport Systems - Volume 1: VEHITS,, INSTICC. SciTePress, 2018,
pp. 178–186.

[8] G. Kar, S. Jain, M. Gruteser, J. Chen, F. Bai, and R. Govindan,
“PredriveID: pre-trip driver identification from in-vehicle data,” in
Proceedings of the Second ACM/IEEE Symposium on Edge Computing
- SEC ’17. San Jose, California: ACM Press, 2017, pp. 1–12.

[9] D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. Huber,
M. Roehder, R. Sosič, and J. Leskovec, “Driver identification using
automobile sensor data from a single turn,” IEEE Conf. Intell. Transp.
Syst. Proceedings, ITSC, pp. 953–958, 2016.

[10] L. Moreira-Matias and H. Farah, “On Developing a Driver Identification
Methodology Using In-Vehicle Data Recorders,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 9, pp. 2387–2396, 2017.

[11] J. S. Wijnands, J. Thompson, G. D. Aschwanden, and M. Stevenson,
“Identifying behavioural change among drivers using Long Short-Term
Memory recurrent neural networks,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 53, pp. 34–49, Feb. 2018.

[12] A. Chowdhury, T. Chakravarty, A. Ghose, T. Banerjee, and P. Balamu-
ralidhar, “Investigations on Driver Unique Identification from Smart-
phones GPS Data Alone,” Journal of Advanced Transportation, vol.
2018, pp. 1–11, 2018.

[13] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” arXiv:1301.3781 [cs], Jan.
2013, arXiv: 1301.3781. [Online]. Available: http://arxiv.org/abs/1301.
3781

[14] Y. Bengio, “Deep Learning of Representations for Unsupervised and
Transfer Learning,” in Proceedings of the 2011 International Conference
on Unsupervised and Transfer Learning Workshop - Volume 27, ser.
UTLW’11. JMLR.org, 2011, pp. 17–37, event-place: Washington, USA.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045796.3045800

[15] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, Nov. 1997.

[16] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation,”
arXiv:1406.1078 [cs, stat], Jun. 2014, arXiv: 1406.1078. [Online].
Available: http://arxiv.org/abs/1406.1078

[17] F. Chollet et al., “Keras,” https://keras.io, 2015.
[18] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

[19] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv:1412.6980 [cs], Dec. 2014, arXiv: 1412.6980.
[Online]. Available: http://arxiv.org/abs/1412.6980

[20] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
and T.-Y. Liu, “LightGBM: A Highly Efficient Gradient Boosting
Decision Tree,” in Advances in Neural Information Processing Systems
30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 3146–3154. [Online]. Available: http://papers.nips.cc/paper/
6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf

[21] Y. Lassoued, J. Monteil, Y. Gu, G. Russo, R. Shorten, and M. Mevissen,
“A Hidden Markov Model for Route and Destination Prediction,”
arXiv:1804.03504 [physics], Mar. 2018, arXiv: 1804.03504.

[22] A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for
Networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’16. San
Francisco, California, USA: ACM Press, 2016, pp. 855–864. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2939672.2939754

