DRAFT.V2, NOVEMBER 2019

Driver Identification only using GPS trajectories:
A Deep Learning Approach

Sasan Jafarnejad, German Castignani, and Thomas Engel,

Abstract—Connected vehicles and new paradigms in the mo-
bility sector have recently pushed forward the need for accurately
identifying who is behind the steering wheel on any driving
situation. Driver Identification becomes part of a building block
in the mobility area to enable new smart services for mobility like
dynamic pricing for insurance, customization of driving features
and pay-as-you-drive services. However, existing methods for
driver identification depend on complex and high sample-rate
vehicle data coming either from CAN-bus or from external
devices. In this paper we propose to explore the potential for
high accuracy driver identification with low-cost and low sample-
rate data, mainly GPS trajectories obtained from smartphone. In
this approach we contextualize each location data-points in a trip.
Then we construct a set of continuous, categorical, and sequential
features to represent the whole trip. For driver identification,
we propose a Deep Learning (DL) architecture composed of
embedding and recurrent neural networks (RNNs) layers. Our
proposed approach, outperforms, LightGBM and HMM-based
baselines. We obtain overall error-rate of 1.9, 3.87, 5.71, 9.57,
13.5% for groups of 5, 10, 20, 50, 100 drivers. The results show
outstanding accuracy and performance, enabling a fast and low-
complex deployment.

Index Terms—Driver identification, Deep Learning, Telematics,
Driver profiling.

I. INTRODUCTION

N recent years, the mobility landscape has transformed.

People are now switching from the traditional car-
ownership model to a panoply of shared-mobility offers,
including car-sharing, car-pooling, ride-hailing or short-term
leasing, among others. In parallel, car manufacturers have been
increasingly introducing car connectivity (telematics) to even
low-cost models. Even for cars without connectivity third-
party aftermarket data collection devices (such as insurance
dongles) exist that add additional connectivity. Availability of
substantial amount of car data, enables new services such as
fraud-detection, tailor-made mobility products with dynamic
pricing, and automated claim management, for which driver
identification (ID) becomes a crucial component. Driver ID
refers to inferring driver’s identity based on driving behavior.
Anything driver does during driving can be considered driving
behavior. This encompasses pedal operation and steering, ve-
hicle dynamics or even higher level decisions such as speeding.

Driver ID also has indirect safety applications. Fatigue and
drowsy driving—which are a major contributory factors to
crash—are common among heavy vehicle long-haul drivers. In
many countries, regulations limit the working hours of these
drivers, however even though measures are in place to enforce
such limitations, drivers resort to workarounds. Driver ID can
add an extra level of confidence and prevent them. Regardless
of the regulations, it is valuable for large fleets—heavy or

otherwise—to be able to verify driver’s identity without the
need to install and maintain traditional authentication methods
such as smart-cards or RFID tags.

Ride-hailing apps such as Uber, Lyft, and Bolt have rev-
olutionized transportation by providing a level of comfort
that once deemed unimaginable, but they have issues of their
own; There have been many reports of assault and various
other crimes by ride-hailing drivers [1], in addition there
are cases that drivers commit fraud or game the system.
They create fake global positioning system (GPS) traces,
create ride requests from stolen accounts [2]. Introduction of
background checks by the ride-hailing companies—which is
now mandatory in some jurisdictions—has reduced the crime
rates, but new workarounds emerge. Some drivers use stolen
accounts, or share the their accounts. Similar challenge exists
for on-demand delivery services such as Deliveroo, and even
traditional fleets. This is another case that driver ID can prove
useful, the major difference is that fleets and heavy vehicles are
already equipped with data collection devices (in most cases)
but in the case of ride-hailing apps, the only data collection
device is the smartphone, which does not have access the rich
car data that can be obtained from vehicle itself.

We can categorise the methods in the literature by the data
they use: 1) Car data, often with high sample-rate, this kind
of data is usually collected from car’s internal network (most
often CAN-bus), using OBD-dongles, black-boxes or external
sensors. 2) Location data provided by global navigation satel-
lite systems (GNSSs). Usually lower sample-rate and noisy
data which can be provided by smartphones, car-navigation
system or external receivers. Most current research has dealt
with the car data, these solutions require custom hardware,
and high-sample data, which limits their deployment. There is
need for driver ID methods that are not hardware-dependant
and can guarantee high accuracy even with low sample-rate
data, which minimizes communication and storage costs.

Therefore, in this paper we consider a scenario in which,
only location data (GPS coordinates) of vehicles is available,
and we investigate efficacy of this low-sample location data
for identifying drivers. We provide a method that relies only
on GPS data obtained from a smartphone and succeeds in
accurately identifying the driver. We use and external service
to contextualize the input, and extract features. These features
have various data types, including continuous, categorical, as
well as variable length sequential data. Our proposed system
can accept all the above mentioned features and identify the
drivers. In particular, we present an efficient way of encoding
location coordinates and road-network links using embeddings
to be used in deep neural network (DNN) models. We evaluate

DRAFT.V2, NOVEMBER 2019

50000
300 40000

30000
200

20000

100
10000

0 IIIIIII.I-----__. — 0

00 750 1000 1250 1500
count trips

(@
Figure 1.

75

50

||II 25
I..--—___ O

trlp length km]

150
125

100

70 80 200 500 600
active perlod days]

()

(a) Histogram of number of trips per driver. (b) Histogram of trip lengths in km. There were few trips longer than 80km that are excluded. (c)

Histogram of active days, which is the interval between the first and the last trip made by each driver. Some outliers with active period longer than 600 days

are excluded.

our proposed method using a large set of driving data covering
thousands of different drivers being active for up to more than
one year in the Greater Region of Luxembourg.

The remainder of this paper is organized as follows. In
Section II we present a complete taxonomy of the related work
in the topic. Section III introduces and characterizes the data
set used in this study. Section IV goes into the details of the
proposed methodology. Section V describes the experimental
setup and the baseline methods used for comparison. Then in
Section VI we introduce the experimental setup and results.
Finally in Section VIII we conclude.

II. RELATED WORK

The main focus of research in driver ID has been on car
data, high sample-rate data obtained from the car itself. The
general approach is to extract a set of features over sliding
windows. Treat features from each window as a separate
example, train a classifier and make predictions. In terms of
features, a variety of methods is explored by the research
community, in addition to simple statistics, some works use
complex features such as cepstral coefficients [3], [4], [5], Dis-
crete Wavelet transform (DWT) [6], and spectral features [7],
[8]. In terms of the classification method, ensemble methods
such as Random Forest (RF) [7], [6], [3], density estimation
methods such as Gaussian mixture model (GMM) [5], [8] or
artificial neural network (ANN) based method such as extreme
learning machine (ELM) are used in the literature [4].

There are a few works that focus on location data. [9] uses
location and accelerometer data to identify family members.
They use location data to construct clusters of locations, and
used the origin and destination clusters as a feature, among
other features such as excessive manoeuvres extracted from
accelerometer, weekday, departure time and trip duration. Then
they used conventional Machine learning (ML) algorithms to
identify the driver, and achieved accuracy of about 70%. In
[10], although the authors’ focus is behavior change from
riskiness aspects, they informally perform driver ID. They
use a large dataset of 3000 drivers provided by an insurance
company, that contains location and accelerometer data. They
train a classifier to classify drivers as themselves, a risky driver
or a safer driver. In the training process they sample 40 safe
and risky drivers (to represent each class) and use their trip

as proxy for risky or safe driving. From location data, they
only use over-speeding events and the rest of the features
are obtained by binning (thresholding) the accelerometer data.
Chowdhury et al. [11] focus only on location data collected
from smartphone, they estimate many secondary signals from
speed and heading (e.g. jerk, lateral acceleration, and longitu-
dinal acceleration etc.). They compute 137 statistical features
per trip and use a RF classifier to identify the drivers. For
groups of 4 to 5 they obtain accuracy of 82.3% on average.

n
S e I

1

n

=
Map-matching ZEEE 2 : _
Link 1 U Attribute

Figure 2. The relationship between different entities in the dataset. Each
driver makes multiple trips, each trip is composed of multiple location data-
points. A map-matching service maps a location data-point to one link, then
a contextualizer service assigns multiple attributes to each link. For each trip
we extract multiple metrics which take into account every location, their
corresponding links and their attributes.

III. DATASET

In this work we use a dataset provided by Motion-S SA.
During a data collection campaign, more than ten thousand
participants downloaded a gamified smartphone application
to provide driving behavior tips, in exchange of receiving
feedback on their driving behavior (riskiness factors) and a
chance to win a prize. The participants have been collecting
driving data in the background by detecting car start and stop
using Bluetooth connection events with their car infotainment
system. We refer to such a recording session as a trip.
Conceptually a trip could be a commute to work-place or back,
visiting the doctor’s office, or going to the mall for shopping.
Additionally there are times that the participant either disables,

DRAFT.V2, NOVEMBER 2019

Table 1
METRICS, AND DIMENSION OF THEIR CORRESPONDING FEATURE VECTORS.
Metric Continuous Categorical Sequential ~ Description
Day of week - 1(7) - Day of week
E Hour - 124 - Hour
g Minute - 14 - Minutes binned into 4 quarters
£ Temporal exposure 3 - - Slight, Serious, Fatal
& Peak-hour - 12 - If trip took place at peak hour.
Total time (s) 1 - - Duration of the trip
daytimeproportion 1 - - Daytime Proportion of trip
= RPA 1 - - Relative positive acceleration
5 Steerin, 1 - - High, Low
z Brake & Acceleration 4 - - High, low
5 Acc./decelleration g-force 6 - - Max, min and average of acceleration or decelleration g-force
m Count illegal actions 3 - - Turn, u-turn, direction
Average overspeed 3 - - -, curves, traffic
Lat./Lon. of trip start/end 2x2 2 X 2(~4k) - Latitude and longitude of start and end of trip
Link IDs - - varies Sequence of links traversed during a trip
Bearing 1 - - Bearin
Distance 2 - - Haversine & Manhattan distance between start and end of trip
Distance (km) 4 - - Distance travelled in motorway, rural, urban areas and their total
Count of road features 4 - - Bridges, Tunnels, Urban Areas, signals, POIs
= Proportion (distance) 3 - - Proportion of distance traveled through motorway, urban and rural areas
5 Proportion 5 - - FCl1, FC2, FC3, FC4, FC5
& Proportion 6 - - express-highway, motorway, highway, urban, interurban, unclassified
Border crossing 1 - - Number of times driver crosses the border
Number of traffic signs 6 - - Priority, yield, stop, lane-merge, pedestrian, overtaking
Count of road object 3 - - Bridges, roundabouts, tunnels
Count of location data points 2 - - Total count, valid count
Speed in traffic 1 - - Driving speed in relation to traffic
Time in traffic 1 - - Time spent in congested traffic

or chooses not to record certain trips, for any possible reason.
During a trip, the app records timestamped locations updates
every second. At the end of each trip or whenever the Internet
connection is available the data gets uploaded to a remote
server. A location update, is comprised of latitude, longitude,
altitude, speed, bearing and estimated accuracy. The dataset
used for this study is free of all personally identifiable and
quasi-identifiers, we only use a pseudo-identifier to keep track
of trips that belong to a lambda individual.

Each trip is a sequence of timestamped location data. After
collection, location data are contextualized using Here.com'
maps layer for map-matching and data augmentation. Map-
matching is a process that associates a latitude, longitude
coordinate to a segment of road network, which we call a
link and is represented by a unique integer identifier. The data
augmentation process is able to provide a wide spectrum of
attributes that characterize a particular link, e.g., slope, speed
limit, administrative region, country, road roughness, points
of interest, traffic signals or whether it is a tunnel or bridge.
After obtaining link attributes we compute additional features
(metrics), e.g., speeding ratio, acceleration and steering. An
overview of these features are listed in Table I.

The dataset used in this paper contains heterogeneous vari-
ables describing many aspects of each trip. For that reason, in
order to improve their understanding, we propose to categorize
the features from two perspectives: semantic and technical.
The semantic perspective is related to the nature of the metric
while the technical perspective is related to the expected type
of output for that particular feature.

A. Semantic categorization of features

The act of driving implies that an individual is driving in
a certain place, at a certain point of time and behaving in a
certain manner.Then, semantically categorize the features as
follows:

'Here.com https://api.here.com

Temporal: Features that are derived from the date and time
of the collected locations of trip.

Spatial: Features that are merely derived from specific
location coordinate and the route taken by the driver.

Behavioral: All the other features, these are features that
are to some extents a function of driver, such as steering and
acceleration patterns, etc..

Note that this categorization is somewhat arbitrary. One
could argue that the hour trips are performed should be
considered behavioral because it is driver’s choice. Since our
focus is driver ID and its applications, there are use-cases
that cannot depend on every feature categories. For example
in case of long haul truck drivers, if the truck is driven by
an illegitimate driver, since the destination and likely the
route does not change, we cannot rely on spatial or even
temporal features, therefore behavioral features are our only
chance to be able to discriminate the two drivers. Semantic
categorization of the features is indicated on the left side of
the Table 1.

B. Technical categorization of features

The technical categorization refers to the expected output
type, because every data type requires an appropriate model.
There are three types of features that we are concerned with:
1) continuous 2) categorical 3) sequential.

Continuous features: As presented earlier, for every trip, a
number of metrics is computed. We can represent real valued
feature as X € RM*N where M is number of trips and N
is number of features. The continuous features are scaled as
below:

X" — mean(X")

X" =
std(Xn)

(D

mean(X™) is the mean of the n'" dimension of the X across
all trips of all drivers.

DRAFT.V2, NOVEMBER 2019

19 Categories

Prestations Familialgs

=
porte Nbuve €3 Eglise Sairft-Alphose

municipal de
Luxembourg e

Lambert Redoubt| @

8 Categories m——
<

PontAdoiphe (&)

plateau Boyrbon €)@ Musée de a bahaue &

o

Figure 3. A demonstration of location cross-features. A grid is laid over
the Luxembourg city’s centre district. Each grid-cell can be thought of as a
2-d bucket that is assigned an integer identifier. Then any location data-point
anywhere in a grid-cell is mapped to the grid-cell’s identifier.

std(X™) is the standard deviation of the n*" dimension of the
X across all trips of all drivers. Number of continuous features
per metric is indicated in continuous column of Table I.

Categorical: these features, even though often represented

as an integer type, their numerical value carries little or no
meaning. For example we treat hour as a categorical feature,
because the hours 23 and 0 even though they are farthest apart
among hours of day, they both represent midnight hours. Other
examples are day of week consisting of 7 categories or peak
hour having only two categories.
In particular, we propose to represent location coordinates of
origin and destination of a trip as a categorical feature. A
location coordinate consists of continuous values for longitude
and latitude, X = (lon, lat), where X € R2. However, we can
also treat them as a cross feature, by binning the latitude and
longitude in a grid on the map (see Figure 3). In this work we
bin the coordinates to 0.003°. To do so, we assign a unique
number to each cell in the grid n € N. Trip origin an desti-
nation coordinates are then mapped to the correspondent cell
identifier X — N, therefore every coordinate is represented by
an integer. . The number of categorical features are indicated
in categorical column of Table I, the number of categories are
indicated between parentheses.

Sequential: The only sequential feature we consider is the
sequence of links taken by the driver. As described earlier in
this Section each location is mapped to a link. In other words
this is a sequence of categorical features. We drop the repeated
consecutive links but still the length of the sequence varies and
is trip dependent.

Table II
DATASET STATISTICS

Preprocessing

Metric before after
Number of drivers 1385 678
Average trips per driver 261.51 297.06
Total trips 362198 201410

C. Preprocessing

To ensure quality, we filter the dataset according to the
following heuristics. Short trips are often faulty and do not
contain enough information to be useful therefore the trips
shorter that five minutes are removed. Moreover since we
calculate the trip-length as the difference between trip-start
and trip-end timestamps. There are times that although the
length is over five minutes, the trace is faulty and contains
few location data points, to filter such instances we also drop
trips with 100 or fewer data points. Trips having constant speed
is another pattern observed among faulty trips, so we decide
to remove them from the dataset. We filter out cross-border
or trips taking place outside Luxembourg territory. Lastly, we
exclude drivers that have fewer than 50 trips in their records.
Table II shows a summary of dataset statistics before and after
pre-processing. There are initially 1385 drivers in our dataset
with each from 13 to 5066 trips they total at 362198 trips,
after pre-processing the number of distinct drivers reduces to
678 and a total of 201410 trips.

IV. METHODOLOGY

The goal of driver ID is to associate a driving trip or its
representation x to its actual driver Cy from a known set of K
drivers. We propose to model the driver ID task as a supervised
classification problem. Therefore we assume information on all
possible targets, which is also known as closed-world scenario,
assuming that all examples are from classes in the training data
set. We choose a Deep learning (DL) approach to tackle the
problem. The motivation behind this decision is the ability of
simultaneous handling of multiple data types. Moreover due
to its modular design, more inputs of any kind can be easily
added to the model.

The main challenge is to handle sparse and high dimensional
categorical data. We have two instances of such data, links
and location cross-features. For instance, only in Luxembourg
(where main part of our data is coming from) there are about
60 thousand links. Categorical data is generally encoded using
one-hot scheme, which for a feature with n values creates
a n-dimensional vector. However, when having features with
categories in orders of thousands, one-hot encoding is not
effective. To tackle the issue of high dimensionality we use a
similar technique as word embedding [12]. Word embedding
is a technique used in natural language processing (NLP) that
maps vocabulary to vectors of real numbers. We apply this
technique to every categorical feature.

Let us take the example of links to describe the method
more in detail. We can represent a trip as a sequence of links
traversed, U = {uy,...,ur}, where u; is a one-hot vector
in space AP representing link, D is total number of links in
our covered region and L is the number of links in the trip.
Since D is large, learning in AP space is computationally
expensive. Therefore we map links into an embedding space.
We call this link embedding, which is semantically similar to
word embedding, AP — RP, where P is the dimension of
embedding space that can be between 32 to 128 depending
on the hyperparameters. After applying the map fiink emsb :
U +— V, becomes V = {vy,...,vr}, where v; € RY. In

DRAFT.V2, NOVEMBER 2019

™ Embedding
bedding RNN

Softmax Aux Out 1

Embedding N

Figure 4. Architecture diagram

Table 1T
SUMMARY OF MODEL PARAMETERS FOR AN EXAMPLE EXPERIMENT WITH
50 DRIVERS. AUXILIARY OUTPUTS ARE OMITTED.

Module Layer Kernel, Bias # params
Sequential recurrent_gru_orig (3,128),(128,) 98688
Sequential recurrent_gru_dest (3,128),(128,) 98688
Sequential embed_link (29166, 128) 3733248
Continuous cont_dense_1 (72, 256),(256,) 18688
Continuous cont_dense_2 (256, 128),(128,) 32896
Categorical ~ embed_location (8201, 96) 787296
Categorical ~ embed_minute 4, 6) 24
Categorical ~ embed_hour (24, 12) 288
Categorical ~ embed_dayofweek (7, 8) 56
out_branch out_dense_1 (602, 512),(512,) 308736
out_branch out_dense_2 (512, 128),(128,) 65664
out_branch out_dense_3 (128, 50),(50,) 6450

practice this mapping is either pre-trained (like word vectors
used in NLP) or learned jointly with the model, we chose the
latter because due to relatively small amount of training data,
learning an embedding jointly with model allows us to learn
an embedding that is specialized in discriminating between
drivers. On the other hand we hypothesize learning a pre-
trained embedding on a large corpus (millions of trips) that
is then fine-tuned for target drivers, which should improve the
generalization and even reduce the amount of data needed for
training, due to lack of sufficient data we leave this for future
work [13].

We can use a similar mapping for any other categorical data,
with the difference that P should be chosen proportional to
the number of categories of the feature.

A. Neural network architecture

We propose a DNN architecture that consists of three
modules, each with a different feature vector, continuous,
categorical and sequential. Figure 4 illustrates the proposed
architecture.

Sequential module: The upper part of Figure 4 models the
link sequence, which is the only sequential feature we consider
in this work. To avoid having to handle long sequences

Softmax Output

of variable length, we separately model the beginning and
end of a link sequence. We introduce a hyperparameter p
that determines the length of the origin and destination sub-
sequences. Denoting L as length of link sequence, if L < 2p
these sub-sequences may overlap and if L < p the rest of the
sub-sequence is filled with zeros. Each sub-sequence is passed
through an embedding layer, these layers share their weights.
The embedding vectors are initialized randomly and then
trained to minimize the loss function. We feed the embeddings
to the recurrent neural network (RNN). We experiment with
long short-term memory (LSTM) and gated recurrent unit
(GRU) cells [14], [15]. Then the output from two RNN units
is concatenated and merged back to the main network. We also
branch out an auxiliary output (aux_outl), which consists of
a fully-connected layer with Softmax activation function.
Categorical module: For each categorical variable we create
an embedding, the dimensions of this embedding is pro-
portional to the number of categories in the variable. It is
calculated using the Equation 2 for each categorical feature:

embed_dim = min(([logy(vocab_size)] + 1) x k,50) (2)

where vocab_size is the number of categories and « is a hy-
perparameter. The resulting embeddings are then concatenated
and passed through a fully-connected layer with rectified linear
unit (ReLU) non-linearity [16] and merge back to the main
branch. Similar to sequential branch to facilitate learning, we
also branch out an auxiliary output using a fully-connected
layer and a softmax.

Continuous module: The continuous branch is the main
branch. All the continuous features are fed into two fully-
connected layers and then the other two branches are
merged (concatenated) in it. Then they are followed with
two other fully-connected layers, a softmax activation. We
concatenate outputs from these modules and feed them into
two dense layers with ReLU activation functions, followed by
a drop-out layer. Softmax function is applied to the output of
the last drop-out layer.

Since we jointly train all modules to facilitate learning
process we branch out auxiliary outputs from sequential and

DRAFT.V2, NOVEMBER 2019

categorical modules, indicated as aux_out_I and 2 in Figure 4.
Our goal is to minimize the error:

1 &
}rélgN;J(ynvf(Xn)) 3)

where y is the target (correct driver) and x is the input feature
vector and J measures the loss, when having one output.

N
1
J=— N ; log Pmodel [yl € CU@] (4)

We adjust J to accommodate the auxiliary outputs.

1 N
J= N Z Z wk(logpk[yi € CUL]))

i=1 k€outs

Where w is the output weight and outs consists of all outputs
{main_out, auz_outl, aur_out2}, we assign weight 1 to the
main output and 0.2 to the auxiliary outputs.

V. EXPERIMENTAL SETUP

We evaluate the performance of the proposed model with
real-life applications in mind. We consider scenarios with |C|€
{5, 10, 20, 50, 100} drivers. Our data set contains 678 drivers,
however each driver has different number of trips and their
trip composition, driving style varies. To cover a representative
sample of drivers we repeat experiments for every ¢ € C, 30
times, each time with another random (no replacement) sample
of drivers. This will also account for the case that drivers in
a certain sample may be easy or difficult to discriminate.

Moreover in order to tackle the class imbalance in our data
set, for every sampled driver, regardless of their number of
trips, we randomly sample 200 trips (with replacement). This
will lead to up or down sampling depending on how many trips
a driver has in the data set. We split the 200 trips into training
and validation sets in a 90%-10% ratio. Since the examples
sampled for each experiment are balanced we use the accuracy
as the evaluation metric:

| X
acc = N Z 1(y; = 4i) (6)
i=1

where 1 is the indicator function, ¢; and y; are respectively
predictions and true driver for the i*" trip. Since for most
experiments accuracy is close to 1 to improve readability we
use the error-rate (1 — acc). For each experiment we report
the average and standard deviation of the error-rate across
repetitions.

The neural network model is implemented using the func-
tional API of Keras [17] with Tensorflow backend [18]. For
training we used, batch size of 64 per GPU and optimized the
model with Adam optimizer [19] for 50 epochs. The model
often reaches the lowest error-rate in 20 epochs. We stored
the model parameters at each epoch, and later picked the
parameters with the best score on the validation set.

Table IV
HYPERPARAMETERS OF THE MODEL

Module hyperparameter candidate values

link embeddings {32, 48, 64, 96, 128}

recurrent unit {GRU, LSTM}

recurrent hidden units {64, 96, 128}
Sequential recurrent dropout rate {0.0, 0.3, 0.5}

p (sequence length) {10, 15, 20, 30}

N {[256, 128], [128, 64],

fully connected [256], [128]}

{512, 256], [256, 128],

Continuous U1y connected [128, 128], [128, 641}

dropout rate {0.1, 0.3, 0.5}
Categorical location embedding dims. {32, 48, 64, 96, 128}

g % (embedding coeff.) {1, 2, 3}

A. Hyperparameter search

DL architectures have large number of hyperparameters and
the search space to find the optimal architecture is compu-
tationally expensive to cover. To find hyperparameters that
perform well we break the network down to its modules. For
each module we perform a separate hyperparameter search
then we use the optimal parameters for the full module. Clearly
with this approach we will not obtain the optimal parameters,
but it should be give us a close approximate. The full set of
hyperparameters we experimented with is given in Table V-A
and the best performing parameters are indicated in boldface.
We performed hyperparameter search only over one set of
randomly selected 50 drivers.

B. Baseline algorithms

Since there are no other works that we could directly
compare our approach with, we introduce two baseline algo-
rithms. The first model is LightGBM and a hidden Markov
model (HMM) based model, to have a reference for the
sequential module of our architecture. We also consider a meta
model consisting of a combination of the two baselines as a
comparable contender for our proposed DNN architecture.

1) LightGBM: LightGBM is a variation of gradient boost-
ing decision tree (GBDT) and the state-of-the-art algorithm
for structured data [20]. It is optimized for faster training and
efficiency. LightGBM is generally used for large amounts of
data, to make sure it performs well with this amount of data
we ran some initial experiments and compared its performance
with Random Forest [21] and Gradient Boosting [22].

Although LightGBM can process categorical data it cannot
process sequential data, therefore we do not use the sequence
of links with this classifier. We use the following hyperparam-
eters:

o learning_rate=0.1

o max_depth=30

o min_data_in_leaf=20
o num_leaves=50

o num_round=500

the hyperparemeters are chosen after running a hyperparameter
search.

DRAFT.V2, NOVEMBER 2019

2) Hidden Markov model: To set a baseline for the recur-
rent module of our model, we use a sequence model based
on HMM. We adapt the approach used in [23] to our driver
ID application. In that work the assumption is that the trips
are clustered in advance according to trip destination. Their
goal was to predict the destination by identifying the cluster
(hidden state). We consider the hidden state to be the driver,
therefore our equivalent of the cluster is the driver. The model
makes use of link-driver co-occurrence matrix F'. F' € N™*"
where F; ; is count of times driver j € C in traversed link
1€ L.

Having constructed F, we can compute p(/|C = ¢) and
p(C = ¢|l) for any given driver (c) and link (I) by employing
the Equations 7 and 8.

#trips traversing | by driver c
p(llC = ¢) =

trips by driver c
" @

B 2:11 Fi,c

#trips traversing | by driver ¢
p(C=cll) =

trips passing via |
F. (®)

B Z;L::l EJ

Algorithm 1 shows how we perform the prediction. P; repre-
sents likelihood of driver ¢ being the actual driver. Normalize
is a routine that normalizes every P; to be a valid probability.
T is total number of links in trip. It is possible that driver
crosses a link that she never has or there could be a mistake
in map-matching, to avoid getting zero probability for correct
driver, the constant r is introduced alleviate this problem.

Algorithm 1 Driver prediction with drivers as hidden states
1: n < |C |
2 k<« 1
3: r<+ 0.1
4: for 7 € C do
6: end for
7
8
9

. while £k < T do
for : € C' do
10: end for
11: normalize(P;);cc
122 for i e C do

13: P2 +(1-1)P
14: end for
15: kE+—Ek+1

16: end while
17: return argmax;.o F;

3) Combined model: We also construct a model by com-
bining LightGBM and the HMM model. Note that the pro-
posed DNN takes advantage of continuous, categorical, and
sequential features, but LightGBM only uses the first two,
and HMM only the last one. The combined model therefore is
expected to perform better than each single baseline methods.
We take a linear combination of their output probabilities and

0.5
Algorithms

= LightGBM
s HMM

04 mmm Combined
=== DNN

Error rate
o
w

°
)

50 100

o . '.h |]
5 10 20

of drivers

(a)

Error-rate - mean (std.)
drivers Baselines
LightGBM HMM Combined DNN
5 0.0704 (0.035) 0.138 (0.059) 0.0759 (0.04) 0.019 (0.016)
10 0.0905 (0.027) 0.211 (0.051) 0.0854 (0.024) 0.0387 (0.018)
20 0.0972 (0.015) 0.281 (0.048) 0.0915 (0.015) 0.0571 (0.016)
50 0.13 (0.016) 0.38 (0.035) 0.123 (0.015) 0.0957 (0.015)
100 0.166 (0.02) 0.471 (0.028) 0.159 (0.019) 0.135 (0.016)
(b)

Figure 5. Error-rate comparison between baseline and DNN. (a) and (b) are
different representation of the same results. HMM has the highest error-rate,
LightGBM performs much better than HMM. LightGBM/HMM combined
model consistently provides slightly better performance than LightGBM. It is
clear that DNN approach outperforms other approaches. We also observe that
for 5 drivers, there is a large performance gap between DNN and combined
model, however this gap decreases as the number of drivers increase to 100.

use the resulting probabilities for prediction. We introduce a
hyperparameter « to be able to adjust the contribution of each
model. Equation 9 demonstrates this:

§ = arg rgax{ahLightGBM(X) + (1 —-a)hgum(X)} 9
ce
where hrighigm and hgpry are the LightGBM and HMM
models and X is trip feature vector. Empirically find the
optimal value of a to be 0.7, and this is the value that we
used in our evaluations.

VI. EXPERIMENTAL RESULTS

In this section presents the experiments performed and their
results. We compare the proposed DNN architecture with
baseline methods. Then we evaluate the effect of various
combinations of semantic feature categories to simulate how
the model would perform for various use-cases. We investigate
the effectiveness of using the cross-features. And lastly we
investigate the effect of amount of training data on prediction
performance.

A. Comparison with baselines

In this experiment every algorithms is fed the same data
sets and the only difference is in the features which is an ar-
tifact of inherent differences between the models. Particularly
LightGBM model lacks the link sequence feature while HMM
model only has the link sequence as its input feature. Figure 5a
shows the error rates of the proposed model in compare to

DRAFT.V2, NOVEMBER 2019

LightGBM feature importance
origin-longitude
origin-latitude
dest.-longitude
dest.-latitude
of links
avg. acceleration [g]
of speedings
avg. overspeed
speed in traffic
prop. FC5
Positive Kinetic Energy
avg. decceleration [g]
avg. overspeed in traffic
bearing
prop. FC2
haversine distance
max. acceleration [g]
of speedings in traffic
stopping events
prop. unclassified roads

T
0.00 0.01 0.02 0.03 0.04

Feature

Feature category
B Behavioral
Bl Spatial

Figure 6. Top 20 most important features obtained from LightGBM. Spatial
features related to origin and destination dominate the top spots, followed by
even mix of spatial and behavioral features.

baselines. LightGBM and HMM models perform similarly for
groups of 5 drivers, but as the number of drivers increase
the HMM model significantly deteriorates in performance.
The combined model as expected has lower error-rate than
LightGBM or HMM for every scenario. We can also see that
the DNN model outperforms the baseline models in every
scenario.

B. Semantic feature categories

In this experiment we evaluate the importance the three
semantic feature categories that we introduced in Subsection
III-A. We compared all possible combinations of feature
categories. To depict the model performance under various
circumstances and applications. The corresponding results are
presented in Figure 7. We can clearly see that temporal
features alone, perform the worst with about 40% error rate for
5 drivers that increases to 79.3% for 100 drivers, this shows
that merely knowing the time-of-day and day-of-week are not
enough to discriminate between drivers. Second best feature
category is the behavioral, it performs reasonably well for
small number of drivers (19% error-rate for 5 drivers) but as
the number of drivers increase the error rate also increases.
Since behavioral features are not directly route dependant, this
shows promise for applications such as such as theft detection
or driver verification, because error-rate would even decrease
further when trained used for smaller set of drivers. Spatial
features by far are the best category, they provide error-rate
of orders of magnitude lower than other feature categories,
this is justified because each person only travels to a limited
number of point of interests (POIs) and it is not difficult to
learn them. It is important to note that combinations of feature
categories always results in improved accuracy, this shows that
all the feature categories contribute to the predictions, but their
contribution is not equal. Since the contribution of temporal
feature category is small we could remove them from the
system without significant increase in error-rate, with nothing
to lose in terms of error-rate we gain in being more privacy
friendly.

Figure 6 shows the top 20 features obtained from Light-
GBM model corresponding to a randomly selected experiment.

0.8 Feature set

0.7

0.6

ST
05 sB
sTB
0.4
0.3
0.2
| i
0.1 \ Bl
e ' e
0o MEkEk [L1 | | |
10 20 50 100

5

[

Error rate

of drivers

Figure 7. Error-rate per feature-set. Using all features (STB) results in low
error-rate of 0.009 for 5 drivers and 0.152 for 100 drivers. Clearly the best
single category is spatial (S), followed by behavioral (B).

Although the order may not completely correspond to the
contribution of each feature to our DNN model it will help
to get an idea of the most important features. We can see
latitude and longitude of origin and destination constitute the
top 4 features. Then there are a number of behavioral features
such as a number of speeding related features and features
derived from acceleration patterns. The other group of features
are those reflecting the composition of the route taken by the
drivers, the distance and the number of links.

Table V
EFFECTIVENESS OF LOCATION CROSS-FEATURES

drivers Error-rate - mean (std.)

Full model Excl. cross-features Excl. coordinates
5 0.019 (0.016) 0.0211 (0.02) 0.0218 (0.023)
10 0.0387 (0.018) 0.0456 (0.02) 0.0422 (0.02)
20 0.0571 (0.016) 0.0663 (0.017) 0.0594 (0.015)
50 0.0957 (0.015) 0.115 (0.017) 0.0998 (0.017)
100 0.135 (0.016) 0.149 (0.017) 0.139 (0.015)

C. Effectiveness of cross-features

We introduced location cross-features in Section III-B
however knowing that in this work accurate origin and des-
tination coordinates are available, this approach may seem
unnecessary. Consider the case accurate coordinates are not
available. This could be either due to lack of accurate data
or because of privacy considerations portion of beginning
and end of a trip is trimmed before upload to the server,
or perhaps differential privacy mechanisms are applied to the
data (perturbing the origin, destination coordinates) [24], [25].
Therefore in cases that we cannot rely on accuracy of location
coordinates binning may provide a better performance because
we no longer assume that coordinates are accurate mea-
surements. To investigate effectiveness of these features we
compare the model performance under three circumstances:
1) full model including both origin, destination coordinates
and cross-features 2) full model excluding cross-features 3)
full model excluding coordinates. The second experiment will
show whether addition of cross-features in presence accurate
coordinates is unnecessary, and the third case will examine

DRAFT.V2, NOVEMBER 2019

whether the model can perform well in absence of accurate
coordinates.

Table V shows the results of the above-mentioned experi-
ments. We can see that for any number of drivers removing the
cross-features will increase the error rate. This confirms that
cross-features contribute toward better driver ID (about 10%
reduction of error-rate in average for 100 drivers). In absence
of coordinates (3rd case) the model performs slightly worse
than the full model but better than the case without the cross-
features, we believe this is due to superior generalization capa-
bilities of the embeddings. In future work, in order to further
asses the robustness of the system we suggest investigating
how trimming the start and end of the trips would affect the

performance.
50 100

Figure 8. Error-rate for 3 experiments with 50, 100, 200 trips for training.
We can clearly see that increase in amount of training data greatly reduced
the error-rate. We can expect that even larger amount of training data would
further decrease the error-rate.

of trips
. 50
s 100
0.25 == 200

0.10
5 10 20

o
N
o

Error rate

0.00

of drivers

D. Amount of training data

We investigate how the amount of training data affects the
model error-rate by experimenting with £ € {50, 100,200}
trips. In these experiments at each iteration, for each driver we
randomly sample £ trips, and use this data set for training and
validation. The error-rate and its standard deviation decreases
inversely proportional with £, however this effect dampens as
L increases. There are two explanations, 1) There is only so
much to learn, over that there is little information that the the
model can learn from the extra training data. 2) We do not
have equal number of trips from each driver, it is possible
the fact that we sample the trips with replacement, negatively
affects the performance for the larger values of £, perhaps too
many repeated samples.

VII. DISCUSSION

We motivated this work as if driver identification is a desired
functionality. However one can look at it from adversarial
perspective. A system such as what we discussed here can
be used by an adversary as part of a surveillance system or
for data de-anonymization. Assume a dataset of anonymized
GPS trajectories is published online. Now if the adversary
somehow gets access to identities for a subset of the dataset
or even a disjoint set, as long as there are individuals that have

participated in both. In such cases, our proposed DNN can be
used to de-anonymize the dataset. We see the biggest potential
in driver identification only using behavioral features. Ride-
sharing services such as Uber, Lyft need to verify driver’s
identity to prevent fraud and ensure rider’s safety. In such
case, we cannot rely on spatial or temporal, unless we en-
counter an obvious anomaly, for example a driver that always
works between 9-17h, now starts taking rides at midnight,
or imagine a change in city or country. Other than such
extreme examples, the focus must be on behavioral features.
Our approach achieved 81% accuracy for 5 drivers, better
results can be achieved for smaller number of drivers, or re-
formulate the problem as a verification task, which is a simpler
problem. For the spacial case of ride-sharing drivers, the cost
of false positives is not high, a reasonable implementation can
operate as follows. The DNN fails to verify the driver, then it
triggers a more reliable authentication method such as facial
recognition—Uber appears to be already using this approach
this although it is unclear what triggers it[26]—verify driver’s
identity, and based on that decide to escalate or resolve the
issue.

Furthermore to decrease the amount of training data one can
explore pre-training link embeddings on a large corpus or use
techniques such as node2vec [27] that can be applied to the
road network. In node2vec, instead of using real driving data,
we can construct the graph representing the road network and
use random walks on the graph to learn representations (em-
beddings) for the nodes—which we would refer to as links in
our problem—of the graph. Lastly, it is worth exploring if it is
possible to learn directly from the location data for example by
application of 1-dimensional convolutional neural networks or
RNNSs to longitudinal and lateral acceleration estimated from
speed and bearing, which is available in location data obtained
from smartphones.

VIII. CONCLUSION

In this work we presented an end-to-end driver ID frame-
work. The input to the system is location coordinates cor-
responding to a trip, sampled every second. This data is
easy to obtain, either through a Smartphone or from the car
itself. This is especially important because, more and more
car manufacturers are providing always on connection for
their cars, and upload car operation data to their servers.
Some companies such as Mercedes Benz and BMW provide
Application programming interfaces (APIs) for third-parties
to access to such data. The input is then augmented and con-
textualized using an external service. The augmented features
have various data types, including continuous, categorical, as
well as variable length sequential data. Our proposed system
can accept all the above mentioned features and identify the
drivers. We compare our system with three strong baselines
and outperform them. Since based on use-case it may not
be desirable to use every feature categories, therefore we
evaluated our method using different feature sets; We conclude
that spatial features are most effective, then the behavioral
features and the temporal features are the least effective. We
also investigated the effectiveness of location cross-features

DRAFT.V2, NOVEMBER 2019

and showed that while using numerical value of latitude,
longitude of the origin, destination and their cross-features is
the most effective. When using either one of cross-features
or numerical values, the former performs slightly better (up
to one percentage point). We also showed that our method
improves as more data is collected, which is ideal for a system
that is constantly collecting more data per its usage. We obtain
average error-rate of 1.9, 3.87, 5.71, 9.57, 13.5% for groups
of 5, 10, 20, 50, 100 drivers which shows a great promise and
enables other applications to be built on top of this system.

ACKNOWLEDGMENT

The authors would like to thank Motion-S SA for providing
the dataset used in this study.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[10]

(11]

[12]

[13]

[14]

[15]

REFERENCES

“Who’s Driving You? | Promoting for-hire vehicle safety and
highlighting the risks of Uber and Lyft” [Online]. Available:
http://www.whosdrivingyou.org/

A. Ng, “Uber fights off scammers every day. Here’s how it
learned the tricks.” [Online]. Available: https://www.cnet.com/news/
uber-fights-off-scammers-every-day-heres-how-it-learned- the-tricks/
S. Jafarnejad, G. Castignani, and T. Engel, “Towards a Real-Time Driver
Identification Mechanism Based on Driving Sensing Data,” 20th Int.
Conf. Intell. Transp. Syst., no. October, p. 7, 2017.

M. V. Martinez, J. Echanobe, I. Campo, M. Martinez, J. Echanobe, and
I. del Campo, “Driver Identification and Impostor Detection based on
Driving Behavior Signals *,” 2016 IEEE 19th Int. Conf. Intell. Transp.
Syst., pp. 372-378, nov 2016.

C. Miyajima, Y. Nishiwaki, K. Ozawa, T. Wakita, K. Itou, K. Takeda, and
F. Itakura, “Driver modeling based on driving behavior and its evaluation
in driver identification,” Proc. IEEE, vol. 95, no. 2, pp. 427-437, feb
2007.

D. Hallac, A. Sharang, R. Stahlmann, A. Lamprecht, M. Huber,
M. Roehder, R. Sosi¢, and J. Leskovec, “Driver identification using
automobile sensor data from a single turn,” IEEE Conf. Intell. Transp.
Syst. Proceedings, ITSC, pp. 953-958, 2016.

M. Enev, A. Takakuwa, K. Koscher, and T. Kohno, “Automobile Driver
Fingerprinting,” Proc. Priv. Enhancing Technol., vol. 2016, no. 1, jan
2016.

S. Jafarnejad, G. Castignani, and T. Engel, “Revisiting Gaussian
Mixture Models for Driver Identification,” in 2018 IEEE International
Conference on Vehicular Electronics and Safety (ICVES). Madrid:
IEEE, Sep. 2018, pp. 1-7. [Online]. Available: https://ieeexplore.ieee.
org/document/8519588/

L. Moreira-Matias and H. Farah, “On Developing a Driver Identification
Methodology Using In-Vehicle Data Recorders,” IEEE Trans. Intell.
Transp. Syst., vol. 18, no. 9, pp. 2387-2396, 2017.

J. S. Wijnands, J. Thompson, G. D. Aschwanden, and M. Stevenson,
“Identifying behavioural change among drivers using Long Short-Term
Memory recurrent neural networks,” Transportation Research Part F:
Traffic Psychology and Behaviour, vol. 53, pp. 34-49, Feb. 2018.

A. Chowdhury, T. Chakravarty, A. Ghose, T. Banerjee, and P. Balamu-
ralidhar, “Investigations on Driver Unique Identification from Smart-
phones GPS Data Alone,” Journal of Advanced Transportation, vol.
2018, pp. 1-11, 2018.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient Estimation
of Word Representations in Vector Space,” arXiv:1301.3781 [cs], Jan.
2013, arXiv: 1301.3781. [Online]. Available: http://arxiv.org/abs/1301.
3781

Y. Bengio, “Deep Learning of Representations for Unsupervised and
Transfer Learning,” in Proceedings of the 2011 International Conference
on Unsupervised and Transfer Learning Workshop - Volume 27, ser.
UTLW’11. JMLR.org, 2011, pp. 17-37, event-place: Washington, USA.
[Online]. Available: http://dl.acm.org/citation.cfm?id=3045796.3045800
S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735-1780, Nov. 1997.

K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio, “Learning Phrase Representations
using RNN Encoder-Decoder for Statistical Machine Translation,”
arXiv:1406.1078 [cs, stat], Jun. 2014, arXiv: 1406.1078. [Online].
Available: http://arxiv.org/abs/1406.1078

[16]

[17]
[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of the 27th International
Conference on International Conference on Machine Learning, ser.
ICML'10. USA: Omnipress, 2010, pp. 807-814. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3104322.3104425

F. Chollet et al., “Keras,” https://keras.io, 2015.

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:
https://www.tensorflow.org/

D. P. Kingma and J. Ba, “Adam: A Method for Stochastic
Optimization,” arXiv:1412.6980 [cs], Dec. 2014, arXiv: 1412.6980.
[Online]. Available: http://arxiv.org/abs/1412.6980

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye,
and T.-Y. Liu, “LightGBM: A Highly Efficient Gradient Boosting
Decision Tree,” in Advances in Neural Information Processing Systems
30, 1. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
S. Vishwanathan, and R. Garnett, Eds. Curran Associates, Inc.,
2017, pp. 3146-3154. [Online]. Available: http://papers.nips.cc/paper/
6907-lightgbm-a-highly-efficient- gradient-boosting-decision-tree.pdf

L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1,
pp. 5-32, Oct 2001. [Online]. Available: https://doi.org/10.1023/A:
1010933404324

J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” The Annals of Statistics, vol. 29, no. 5, pp. 1189-1232,
2001. [Online]. Available: http://www.jstor.org/stable/2699986

Y. Lassoued, J. Monteil, Y. Gu, G. Russo, R. Shorten, and M. Mevissen,
“A Hidden Markov Model for Route and Destination Prediction,”
arXiv:1804.03504 [physics], Mar. 2018, arXiv: 1804.03504.

C. Dwork, “Differential Privacy,” in 33rd International Colloquium on
Automata, Languages and Programming, part Il (ICALP 2006), ser.
Lecture Notes in Computer Science, vol. 4052. Springer Verlag, Jul.
2006, pp. 1-12. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/differential-privacy/

M. E. Andrs, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: differential privacy for location-based
systems,” in Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security - CCS ’13. Berlin,
Germany: ACM Press, 2013, pp. 901-914. [Online]. Available:
http://dl.acm.org/citation.cfm?doid=2508859.2516735

“Engineering Safety with Uber’s Real-Time ID Check,” Mar. 2017.
[Online]. Available: https://eng.uber.com/real-time-id-check/

A. Grover and J. Leskovec, “node2vec: Scalable Feature Learning for
Networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining - KDD ’16. San
Francisco, California, USA: ACM Press, 2016, pp. 855-864. [Online].
Available: http://dl.acm.org/citation.cfm?doid=2939672.2939754

