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Abstract—Connected vehicles and new paradigms in the mo-
bility sector have recently pushed forward the need for accurately
identifying who is behind the steering wheel on any driving
situation. Driver Identification becomes part of a building block
in the mobility area to enable new smart services for mobility like
dynamic pricing for insurance, customization of driving features
and pay-as-you-drive services. However, existing methods for
driver identification depend on complex and high sample-rate
vehicle data coming either from CAN-bus or from external
devices. In this paper we propose to explore the potential for
high accuracy driver identification with low-cost and low sample-
rate data, mainly GPS trajectories obtained from smartphone. In
this approach we contextualize each location data-points in a trip.
Then we construct a set of continuous, categorical, and sequential
features to represent the whole trip. For driver identification,
we propose a Deep Learning (DL) architecture composed of
embedding and recurrent neural networks (RNNs) layers. Our
proposed approach, outperforms, LightGBM and HMM-based
baselines. We obtain overall error-rate of 1.9, 3.87, 5.71, 9.57,
13.5% for groups of 5, 10, 20, 50, 100 drivers. The results show
outstanding accuracy and performance, enabling a fast and low-
complex deployment.

Index Terms—Driver identification, Deep Learning, Telematics,
Driver profiling.

I. INTRODUCTION

IN recent years, the mobility landscape has transformed.
People are now switching from the traditional car-

ownership model to a panoply of shared-mobility offers,
including car-sharing, car-pooling, ride-hailing or short-term
leasing, among others. In parallel, car manufacturers have been
increasingly introducing car connectivity (telematics) to even
low-cost models. Even for cars without connectivity third-
party aftermarket data collection devices (such as insurance
dongles) exist that add additional connectivity. Availability of
substantial amount of car data, enables new services such as
fraud-detection, tailor-made mobility products with dynamic
pricing, and automated claim management, for which driver
identification (ID) becomes a crucial component. Driver ID
refers to inferring driver’s identity based on driving behavior.
Anything driver does during driving can be considered driving
behavior. This encompasses pedal operation and steering, ve-
hicle dynamics or even higher level decisions such as speeding.

Driver ID also has indirect safety applications. Fatigue and
drowsy driving—which are a major contributory factors to
crash—are common among heavy vehicle long-haul drivers. In
many countries, regulations limit the working hours of these
drivers, however even though measures are in place to enforce
such limitations, drivers resort to workarounds. Driver ID can
add an extra level of confidence and prevent them. Regardless
of the regulations, it is valuable for large fleets—heavy or

otherwise—to be able to verify driver’s identity without the
need to install and maintain traditional authentication methods
such as smart-cards or RFID tags.

Ride-hailing apps such as Uber, Lyft, and Bolt have rev-
olutionized transportation by providing a level of comfort
that once deemed unimaginable, but they have issues of their
own; There have been many reports of assault and various
other crimes by ride-hailing drivers [1], in addition there
are cases that drivers commit fraud or game the system.
They create fake global positioning system (GPS) traces,
create ride requests from stolen accounts [2]. Introduction of
background checks by the ride-hailing companies—which is
now mandatory in some jurisdictions—has reduced the crime
rates, but new workarounds emerge. Some drivers use stolen
accounts, or share the their accounts. Similar challenge exists
for on-demand delivery services such as Deliveroo, and even
traditional fleets. This is another case that driver ID can prove
useful, the major difference is that fleets and heavy vehicles are
already equipped with data collection devices (in most cases)
but in the case of ride-hailing apps, the only data collection
device is the smartphone, which does not have access the rich
car data that can be obtained from vehicle itself.

We can categorise the methods in the literature by the data
they use: 1) Car data, often with high sample-rate, this kind
of data is usually collected from car’s internal network (most
often CAN-bus), using OBD-dongles, black-boxes or external
sensors. 2) Location data provided by global navigation satel-
lite systems (GNSSs). Usually lower sample-rate and noisy
data which can be provided by smartphones, car-navigation
system or external receivers. Most current research has dealt
with the car data, these solutions require custom hardware,
and high-sample data, which limits their deployment. There is
need for driver ID methods that are not hardware-dependant
and can guarantee high accuracy even with low sample-rate
data, which minimizes communication and storage costs.

Therefore, in this paper we consider a scenario in which,
only location data (GPS coordinates) of vehicles is available,
and we investigate efficacy of this low-sample location data
for identifying drivers. We provide a method that relies only
on GPS data obtained from a smartphone and succeeds in
accurately identifying the driver. We use and external service
to contextualize the input, and extract features. These features
have various data types, including continuous, categorical, as
well as variable length sequential data. Our proposed system
can accept all the above mentioned features and identify the
drivers. In particular, we present an efficient way of encoding
location coordinates and road-network links using embeddings
to be used in deep neural network (DNN) models. We evaluate
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Figure 1. (a) Histogram of number of trips per driver. (b) Histogram of trip lengths in km. There were few trips longer than 80km that are excluded. (c)
Histogram of active days, which is the interval between the first and the last trip made by each driver. Some outliers with active period longer than 600 days
are excluded.

our proposed method using a large set of driving data covering
thousands of different drivers being active for up to more than
one year in the Greater Region of Luxembourg.

The remainder of this paper is organized as follows. In
Section II we present a complete taxonomy of the related work
in the topic. Section III introduces and characterizes the data
set used in this study. Section IV goes into the details of the
proposed methodology. Section V describes the experimental
setup and the baseline methods used for comparison. Then in
Section VI we introduce the experimental setup and results.
Finally in Section VIII we conclude.

II. RELATED WORK

The main focus of research in driver ID has been on car
data, high sample-rate data obtained from the car itself. The
general approach is to extract a set of features over sliding
windows. Treat features from each window as a separate
example, train a classifier and make predictions. In terms of
features, a variety of methods is explored by the research
community, in addition to simple statistics, some works use
complex features such as cepstral coefficients [3], [4], [5], Dis-
crete Wavelet transform (DWT) [6], and spectral features [7],
[8]. In terms of the classification method, ensemble methods
such as Random Forest (RF) [7], [6], [3], density estimation
methods such as Gaussian mixture model (GMM) [5], [8] or
artificial neural network (ANN) based method such as extreme
learning machine (ELM) are used in the literature [4].

There are a few works that focus on location data. [9] uses
location and accelerometer data to identify family members.
They use location data to construct clusters of locations, and
used the origin and destination clusters as a feature, among
other features such as excessive manoeuvres extracted from
accelerometer, weekday, departure time and trip duration. Then
they used conventional Machine learning (ML) algorithms to
identify the driver, and achieved accuracy of about 70%. In
[10], although the authors’ focus is behavior change from
riskiness aspects, they informally perform driver ID. They
use a large dataset of 3000 drivers provided by an insurance
company, that contains location and accelerometer data. They
train a classifier to classify drivers as themselves, a risky driver
or a safer driver. In the training process they sample 40 safe
and risky drivers (to represent each class) and use their trip

as proxy for risky or safe driving. From location data, they
only use over-speeding events and the rest of the features
are obtained by binning (thresholding) the accelerometer data.
Chowdhury et al. [11] focus only on location data collected
from smartphone, they estimate many secondary signals from
speed and heading (e.g. jerk, lateral acceleration, and longitu-
dinal acceleration etc.). They compute 137 statistical features
per trip and use a RF classifier to identify the drivers. For
groups of 4 to 5 they obtain accuracy of 82.3% on average.
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Figure 2. The relationship between different entities in the dataset. Each
driver makes multiple trips, each trip is composed of multiple location data-
points. A map-matching service maps a location data-point to one link, then
a contextualizer service assigns multiple attributes to each link. For each trip
we extract multiple metrics which take into account every location, their
corresponding links and their attributes.

III. DATASET

In this work we use a dataset provided by Motion-S SA.
During a data collection campaign, more than ten thousand
participants downloaded a gamified smartphone application
to provide driving behavior tips, in exchange of receiving
feedback on their driving behavior (riskiness factors) and a
chance to win a prize. The participants have been collecting
driving data in the background by detecting car start and stop
using Bluetooth connection events with their car infotainment
system. We refer to such a recording session as a trip.
Conceptually a trip could be a commute to work-place or back,
visiting the doctor’s office, or going to the mall for shopping.
Additionally there are times that the participant either disables,
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Table I
METRICS, AND DIMENSION OF THEIR CORRESPONDING FEATURE VECTORS.

Metric Continuous Categorical Sequential Description
Te

m
po

ra
l Day of week - 1 (7) - Day of week

Hour - 1 (24) - Hour
Minute - 1 (4) - Minutes binned into 4 quarters
Temporal exposure 3 - - Slight, Serious, Fatal
Peak-hour - 1 (2) - If trip took place at peak hour.
Total time (s) 1 - - Duration of the trip
daytimeproportion 1 - - Daytime Proportion of trip

B
eh

av
io

ra
l RPA 1 - - Relative positive acceleration

Steering 1 - - High, Low
Brake & Acceleration 4 - - High, low
Acc./decelleration g-force 6 - - Max, min and average of acceleration or decelleration g-force
Count illegal actions 3 - - Turn, u-turn, direction
Average overspeed 3 - - -, curves, traffic

Sp
at

ia
l

Lat./Lon. of trip start/end 2 � 2 2 � 2 (� 4k) - Latitude and longitude of start and end of trip
Link IDs - - varies Sequence of links traversed during a trip
Bearing 1 - - Bearing
Distance 2 - - Haversine & Manhattan distance between start and end of trip
Distance (km) 4 - - Distance travelled in motorway, rural, urban areas and their total
Count of road features 4 - - Bridges, Tunnels, Urban Areas, signals, POIs
Proportion (distance) 3 - - Proportion of distance traveled through motorway, urban and rural areas
Proportion 5 - - FC1, FC2, FC3, FC4, FC5
Proportion 6 - - express-highway, motorway, highway, urban, interurban, unclassified
Border crossing 1 - - Number of times driver crosses the border
Number of traffic signs 6 - - Priority, yield, stop, lane-merge, pedestrian, overtaking
Count of road object 3 - - Bridges, roundabouts, tunnels
Count of location data points 2 - - Total count, valid count
Speed in traffic 1 - - Driving speed in relation to traffic
Time in traffic 1 - - Time spent in congested traffic

or chooses not to record certain trips, for any possible reason.
During a trip, the app records timestamped locations updates
every second. At the end of each trip or whenever the Internet
connection is available the data gets uploaded to a remote
server. A location update, is comprised of latitude, longitude,
altitude, speed, bearing and estimated accuracy. The dataset
used for this study is free of all personally identifiable and
quasi-identifiers, we only use a pseudo-identifier to keep track
of trips that belong to a lambda individual.
Each trip is a sequence of timestamped location data. After
collection, location data are contextualized using Here.com1

maps layer for map-matching and data augmentation. Map-
matching is a process that associates a latitude, longitude
coordinate to a segment of road network, which we call a
link and is represented by a unique integer identifier. The data
augmentation process is able to provide a wide spectrum of
attributes that characterize a particular link, e.g., slope, speed
limit, administrative region, country, road roughness, points
of interest, traffic signals or whether it is a tunnel or bridge.
After obtaining link attributes we compute additional features
(metrics), e.g., speeding ratio, acceleration and steering. An
overview of these features are listed in Table I.

The dataset used in this paper contains heterogeneous vari-
ables describing many aspects of each trip. For that reason, in
order to improve their understanding, we propose to categorize
the features from two perspectives: semantic and technical.
The semantic perspective is related to the nature of the metric
while the technical perspective is related to the expected type
of output for that particular feature.

A. Semantic categorization of features

The act of driving implies that an individual is driving in
a certain place, at a certain point of time and behaving in a
certain manner.Then, semantically categorize the features as
follows:

1Here.com https://api.here.com

Temporal: Features that are derived from the date and time
of the collected locations of trip.

Spatial: Features that are merely derived from specific
location coordinate and the route taken by the driver.

Behavioral: All the other features, these are features that
are to some extents a function of driver, such as steering and
acceleration patterns, etc..

Note that this categorization is somewhat arbitrary. One
could argue that the hour trips are performed should be
considered behavioral because it is driver’s choice. Since our
focus is driver ID and its applications, there are use-cases
that cannot depend on every feature categories. For example
in case of long haul truck drivers, if the truck is driven by
an illegitimate driver, since the destination and likely the
route does not change, we cannot rely on spatial or even
temporal features, therefore behavioral features are our only
chance to be able to discriminate the two drivers. Semantic
categorization of the features is indicated on the left side of
the Table I.

B. Technical categorization of features

The technical categorization refers to the expected output
type, because every data type requires an appropriate model.
There are three types of features that we are concerned with:
1) continuous 2) categorical 3) sequential.

Continuous features: As presented earlier, for every trip, a
number of metrics is computed. We can represent real valued
feature as X 2 RM�N , where M is number of trips and N
is number of features. The continuous features are scaled as
below:

Xn =
Xn �mean(Xn)

std(Xn) (1)

mean(Xn) is the mean of the nth dimension of the X across
all trips of all drivers.




