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Abstract—The increasing penetration of connected vehicles
nowadays has enabled driving data collection at a very large
scale. Many telematics applications have been also enabled from
the analysis of those datasets and the usage of Machine Learn-
ing techniques, including driving behavior analysis, predictive
maintenance of vehicles, modeling of vehicle health and vehicle
component usage, among others. In particular, being able to
identify the individual behind the steering wheel has many
application fields. In the insurance or car-rental market, the fact
that more than one driver make use of the vehicle generally
triggers extra fees for the contract holder. Moreover being able
to identify different drivers enables the automation of comfort
settings or personalization of advanced driver assistance (ADAS)
technologies. In this paper, we propose a driver identification
algorithm based on Gaussian Mixture Models (GMM). We show
that only using features extracted from the gas pedal position and
steering wheel angle signals we are able to achieve near 100%
accuracy in scenarios with up to 67 drivers. In comparison to the
state-of-the-art, our proposed methodology has lower complexity,
superior accuracy and offers scalability to a larger number of
drivers.

Index Terms—Driving behavior, driver identification, spectral
analysis, Gaussian mixture model

I. INTRODUCTION

The increasing penetration of connected vehicles nowadays
has enabled driving data collection at a very large scale.
Such a dataset is by definition heterogeneous, including ge-
olocation, speed, inertial motion or even engine information
obtained through Car Area Network (CAN). Many telematics
applications have been also enabled from the analysis of
those datasets and the usage of Machine Learning techniques,
including driving behavior analysis, predictive maintenance of
vehicles, modeling of vehicle health and vehicle component
usage, among others. In particular, being able to identify the
individual behind the steering wheel appears as valid research
problem to solve many application fields. In the insurance or
car-rental market, the fact that more than one driver make use
of the vehicle generally triggers extra fees for the contract
holder. In such a case, the goal is not to deanonymize the
driver but to predict, with a certain probability, the number
of different users making use of the vehicle. Another use
case scenario arises in modern vehicles, including future
autonomous vehicles, where the number of comfort-related
features has increased substantially. Being able to identify
different drivers may enable the automation of comfort settings

(e.g., seats and mirrors position, air-conditioning, adaptive
driving-assistance system profiles) In this paper, we propose
a driver identification algorithm based on Gaussian Mixture
Models (GMM). Compared to state-of-the-art research on
driver identification, we prove that the proposed mechanism
has a lower computational cost allowing at the same time scal-
ability. Moreover, since only gas pedal position and steering
wheel angle signals are used without the need of extra location
or speed-based features, privacy can be preserved.

The remainder of the paper is organized as follows: Section
II presents the related work, Section III gives an overview of
the data-set used in our evaluations. In Section IV we describe
our proposed methodology and evaluation strategy. In Section
V we present the evaluation results. Lastly, in Section VI we
conclude and present the future directions.

II. RELATED WORK

The first use of GMM for driver identification is attributed
to Wakita et al. [2]. They identify drivers by using behavioral
signals collected while driver performs the ”car following”
task. They explore two approaches a) physical driving models,
b) modeling based on the distributions of driving signals using
GMM. They observe that in this task GMM outperforms
physical models. In a follow-up work Miyajima et al. [3]
propose to use Cepstral based features for driver identification.
Cepstral based features, especially Mel-frequency cepstral
coefficients (MFCCs) are well studied for speech and speaker
recognition [11]. In their experiments, they discover that using
Cepstral coefficients from gas and brake pedal is well suited
for driver identification. A very similar approach is taken in
[5], however, they evaluate their methodology on a different
data-set. These experiments prove the efficacy of GMM with
Cepstral features. Although these works show in general good
performance of GMM in driver identification, the data they
use for their experiments comes from pressure sensors that
are retrofitted into highly instrumented vehicles which are not
present in vehicles on the market. In the work we propose in
this paper, we make use of data coming from CAN-bus through
Onboard diagnostic (OBD) port, which by law is mandatory
in vehicles manufactured since 1995.

Meng et al. [1] propose to use dynamical models to repre-
sent driving behavior for driver identification purposes. They
take three signals of Steering Wheel Angle (SW), gas and



TABLE I
AN OVERVIEW OF DRIVER IDENTIFICATION LITERATURE

Reference Data-set Signals Features Model Result

Meng et al. [1] Simulator Steering, acceleration,
braking FFT HMM 75% for 7 drivers

Wakita et al. [2] Simulation
CIAIR

Gas/brake pedals
headway distance Raw Helly, OV

GMM
81% for 12 drivers simulator
73% for 30 drivers real car

Miyajima 2007 [3] Simulator
CIAIR

Gas/brake pedals
headway distance

velocity

Raw
Cepstral

Optimal Velocity (OV)
Gaussian Mixture Model (GMM)

89.6% for simulator
76.8% for 276 drivers

Qian et al. [4] Simulator Gas/brake pedals,
steering

FFT, PCA
ICA SVM 85% for 7 drivers

Özturk et al. [5] UYANIK Gas/brake pedals
headway distance Cepstral GMM 85.21% for 3 drivers

Zhang et al [6] Simulator Gas pedal, steering Raw HMM 85% for 20 drivers

Del campo et al. [7] UYANIK Gas/brake pedal Cepstral MLP 84.6% for 3 drivers

Martı́nez et al [8] UYANIK
12 based on CAN-bus,

6 based on IMU,
headway distance

Cepstral
Spectral etc. ELM 96.95% for 3 drivers

84.36% for 11 drivers

Enev et al. [9] Collected by UCSD
14 signals from CAN-bus

Powertrain,Dynamics,
Pedals,Steering

Statistical, FFT, etc. SVM, Random Forest
Naive Bayes, KNN 100% for 15 drivers

Jafarnejad et al. [10] UYANIK 5 signals from
CAN-bus Statistical, Cepstral SVM, Random Forest

AdaBoost, Extra Trees

95% for 5 drivers
89% for 15 drivers
82% for 35 drivers

brake pedals, and perform Fast Fourier Transform (FFT) on
each signal and use that as the feature vector to train a Hidden
Markov Model Hidden Markov Model (HMM) for each driver.
In a more recent study, Zhang et al. [6] also use HMM for
driver identification purposes. The downside of using HMM-
based methods is the high computational needs and complexity
of the algorithms. Qian et al. [4] compare FFT, Independent
Component Analysis (ICA) and Principal Component Analysis
(PCA) for preprocessing and feature extraction, and propose to
use Support Vector Machine (SVM) for driver identifications.
They identify that FFT is more suitable than the alternatives,
and achieve an accuracy of about 85% for 7 drivers.

Del Campo et al. use Multi-Layer Perceptron (MLP) and
focus on real-time driver identification, for which they also
develop a specific hardware implementation. In another work,
the authors [12] perform systematic feature selection and em-
ploy Extreme Learning Machine Extreme Learning Machine
(ELM) for driver identification.

Enev et al. perform an extensive feature analysis of driver
identification and use various ensemble methods such as Ran-
dom Forest (RF) and an extensive set of features they manage
to achieve a very good identification accuracy of 100%. Since
their aim is to demonstrate the privacy issues caused by sharing
driving data, they have used every computationally expensive
methodology which is not suitable for practical purposes.
As an example, in order to classify n drivers they require
fitting n2 models. In our previous work [10], we propose
a methodology for driver identification based on AdaBoost.
We use 5 signals available from CAN-bus, including Cepstral
features from the gas pedal and steering wheel. Although that
methodology provides very high accuracy (i.e., 95, 89, 82

percent accuracy for 5, 15, 35 driver respectively), it suffered
from two drawbacks that we greatly improved in this work,
a) the need to retrain the models after addition of each new
driver, b) the need for large amounts of test-data to achieve a
good level of accuracy.

Table I presents an overview in terms of methodological ap-
proach and obtained performance of works mentioned above.

III. DATA-SET

In order to validate the methodology developed in this work,
we use the UYANIK data-set, which has been collected under
the shared framework of Drive-Safe Consortium (Turkey)
and NEDO (Japan) International Collaborative Research [13]
[14]. The data collection was performed using a heavily
instrumented Renault Megane. The data includes video and
audio, location data, CAN-bus data, Inertial Measurement Unit
(IMU) data, laser range-finder and pressure sensors underneath
gas and brake pedals. Up to 105 participants drove a route
which consisted of 25 km stretch including city and motorway,
lasting about 45 minutes on average. During the experiment,
participants had to perform various secondary tasks which
resemble occasional distractions during a typical daily driving
experience (For more details refer to [13], [15]). Since this
work intends to propose a solution that can be widely deployed
with the lowest cost impact, therefore we will not use any of
the signals coming from retrofitted sensors and only rely on the
CAN-bus data, universally available in vehicles in the market.
Moreover, knowing that various vehicles provide access to dif-
ferent set of sensors from CAN-bus we limit ourselves to only
the most important signals, namely those directly operated by
the driver, steering wheel and pedals. More precisely from
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Fig. 1. Driver Identification System

the UYANIK data-set we only use SW and Percentage Gas
Pedal (GP) signals, these signals are sampled 32 times per
second (32Hz). We also performed a pre-processing step to
ensure that driving sessions containing a high proportion of
corrupt data are discarded. Then in order to have a balanced
dataset, we discard recordings that are too short or long. In
the end, we are left with 67 different drivers containing a fully
valid data-set to perform our experiments.

IV. METHODOLOGY

In this section, we describe the proposed methodology
which phases are depicted in Figure 1. First we explain the
GMM for driver identification, and model fusion mechanism
then we go over the feature extraction and analysis, and in the
end the evaluation criteria and strategy.

A. The Gaussian Mixture Driver Model

We define the goal of driver identification as the assignment
of a driving trace X to its corresponding driver y. We also
assume that the set of target drivers is finite and that we have
information about all candidate drivers. We propose to use
GMMs for driver identification as they are well studied in the
literature, in particular for speaker recognition [11].

A GMM is a weighted sum of M component densities
(Equation 1).

p (x|λ) =

M∑
i=1

φiNi (x) (1)

where x is a D-dimensional feature vector, Ni(x), i =
1, · · · ,M , are the component densities and φi, i = 1, · · · ,M ,
are the mixture weights. Each component density is a D-variate
Gaussian of the form (Equation 2):

Ni(x)=
1

(2π)D/2|Σi|1/2
exp

{
−1

2
(x−µi)

′Σ−1i (x−µi)

}
(2)

where µi is the mean vector and Σi is the covariance matrix.
The mixture weights should satisfy the constraint

∑M
i=1 pi =

1.

λ = {φi,µi,Σi} i = 1, · · · ,M. (3)

Therefore each driver is represented by a GMM and is referred
to by their model λ.

pre-emphasis FFT log |X|2

DCT +

Spectral features

Cepstral features

Fig. 2. Feature Extraction

B. Driver Identification

For driver identification, a group of S drivers is represented
by S GMMs, λ1, λ2, · · · , λS . Here our goal is to find the
model which has the maximum a posteriori probability for a
given set of observations.

ŷ = arg max
1≤k≤S

Pr(λk|X) = arg max
1≤k≤S

p(X|λk)Pr(λk)

p(X)
(4)

Where X is vector of observations at prediction time (X =
{xt}Ti=1). Assuming that all the candidate drivers are equally
likely to be the actual driver (Pr(λk) = 1/S) and taking into
consideration that p(X) is the same for all driver models,
Equation 4 reduces to:

ŷ = arg max
1≤k≤S

p(X|λk) (5)

Assuming independence between measurements and using
log to facilitate computations we have:

ŷ = arg max
1≤k≤S

T∑
t=1

log p(xt|λk) (6)

where p(xt|λk) is defined by Equation 1.

C. Model Fusion

We consider two signals, gas pedal (GP) and steering
wheel (SW). We chose these signals because they are: 1) di-
rectly operated by driver 2) available through CAN-bus. Since
these two signals come from two controllers that are operated
separately, we model each with a GMM. We use the notation
λG to refer to gas pedal operation model and λS for steering
operation model. Moreover, because the two resulting models
(λG and λS) are not equally informative, we need to give
a higher weight to the model that is a better predictor of the
driver. We use a parameter called α to indicate the weight that
we associate to each model’s likelihoods. Then at identification
time, we combine their log-likelihoods linearly, the ratio is
controlled by the parameter α. In this case, the Equation 6
becomes as below:

ŷ = arg max
1≤k≤S

{α log p(XG|λG,k)+

(1− α) log p(XS |λS,k)} (7)

where XG,XS refer to gas pedal operation feature vec-
tors and steering operation feature vectors respectively, and
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Fig. 3. Feature importance

λG,k, λS,k refer to the kth driver’s gas pedal and steering
models. The idea is that using the right weight will improve
the accuracy. We propose to find the optimal α empirically in
Section V.

D. Feature Extraction

A sliding window approach is used for feature extraction.
We use a 2 seconds long Hamming-window and stride of 1
second, therefore two consecutive window frames have 50%
overlap. As it is shown in Figure 2 signal from each window
frame is pre-emphasized1 to enhance higher frequency com-
ponents, we compute log-magnitude-spectrum of the signal.
From here we perform two different set of operations to obtain
two groups of features, spectral features and cepstral features.
For spectral features we consider log-power-magnitude of
the signal for each 1Hz range to be a feature, up to 8Hz
however, because higher frequencies have smaller magnitude
we compress them in larger ranges in this case, 8-12Hz and,
12Hz and above. We also include the sum of all energies
as a separate feature, therefore we would have 11 spectral
features. To obtain cepstral features we apply Discrete Cosine
Transform (DCT) to log-power-magnitude of signal and mean
normalize it. In this work, we only keep the first 8 cepstral
coefficients as features. Like spectral features, we also consider
the sum of energy among the cepstral coefficients to be an
extra feature as well. This will leave us with 9 cepstral features.
This results in a feature vector of dimension 20 per signal. We
also scale features using the following formula:

Xscaled =
Xraw − X̄raw

std(Xraw) + ε
(8)

to have each feature with a mean of close to zero and variance
of one. ε is a very small value (10−7) added to avoid division
by zero. In our experiments, we scale the data only based on
the training data, and apply the same scale to the test data.

E. Feature Analysis

In initial experiments, we considered adding ∆ and ∆∆ of
both cepstral and spectral features. Delta cepstral features are

1y [n] = x [n]− βx [n− 1]

well studied in speech recognition field. They have shown to
improve accuracy by adding dynamic information to cepstral
coefficients which in turn helps explain temporal dependency
between the frames [16], [17]. Addition of ∆ and ∆∆ will
increase the number of features to 60 per signal. Here we
perform analysis to quantify and validate positive contribu-
tion of each of our signals and feature categories. We use
two measures, mutual information and random forest feature
importance, for both of which implementations from scikit-
learn were used [18]. Results are presented in Figure 3. We
can observe that both signals are important however, it is
clear that GP presents higher importance. When it comes to
comparing feature categories, cepstral features show a slight
advantage however the gap is not significant. It is also clear
that δ features do not play an important role and have low
importance. We also validated this in our preliminary results
as we would usually get better results without δ features. As
a result we decided to remove them altogether for the sake of
simplicity and performance.

F. Evaluation Method

There are two important points we take into account in
evaluating our method. Firstly, since we perform identification
in small sets of drivers c (e.g. 5, 10, 35), it is important to
account for unwanted side effects. For example, it could be
that one set of 5 drivers have very distinct driving styles and
therefore be easily discriminated, while another set of 5 drivers
have similar driving styles and be difficult to discriminate. To
prevent biasing our results with such phenomena we repeat
each experiment with 30 random samples of k drivers. For
each evaluation in order to use the whole data-set for both
training and testing, we employ a cross-validation approach.
In particular hold-one-out cross-validation, in which we first
segment each trip into 10 slices. At each fold, we hold-out
one slice from each of selected drivers, train the models, and
test on the held-out slice. We use accuracy as the evaluation
metric, as defined below:

acc =
1

k

k∑
i=1

1(yi = ŷi) (9)

where 1 is the indicator function, ŷi and yi are respectively
predictions and true driver for ith driving trace.
The overall accuracy score for an experiment is the average
of all cases as follows:

accscore =
1

R · L

R∑
r=1

L∑
l=1

accr,l (10)

where L = 10 is number of cross-validation folds and R = 30
is number of repetitions. In the rest of paper, we refer to this
score as accuracy.

In our experiments we use notions of training window and
decision window, the former refers to the amount of data used
for training and the latter refers to the amount of data used
for testing. Earlier we mentioned that we slice each driver’s
trip into 10 slices, and at each cross-validation fold 9 slices are
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considered to be part of training-set and 1 slice part of the test-
set. In order to perform various analysis sometimes we truncate
the train-set and test-set, for example, training window of 10
minutes and decision window of 1 minute means that from the
training-set we use the first 10 minutes of the trip for fitting
the models and from the test-set we use the first 60 seconds
for predicting the driver.

V. RESULTS

In this section, we will evaluate our proposed methodology
from various aspects and analyze how model parameters affect
the performance.

A. Model Parameters

We seek optimal values for two parameters M which
indicated the number of GMM components and α which is
the ratio by which we linearly combine the likelihoods from
steering and gas pedal models. First, to determine the optimal
number of GMM components we perform a set of experiments
by varying number of GMM components. We consider driver
models with 1 to 9 Gaussian components and fixed α = 0.5,
and evaluate their performance. From the results presented in
Figure 4a we can see that accuracy plateaus starting from 2
GMM components and the best result is obtained with 3 GMM
components.

Depending on the application some time constraints maybe
need to be satisfied by the driver identification solution (e.g.,
detecting fraud, personalizing car configurations per driver).
Therefore we also investigate the training time of the models.
Figure 4b shows the obtained results. As one would expect the
fitting time increases with the number of GMM components.
So for each driver total training time would be the sum of
gas pedal (λG) and steering (λG) models. Similarly, for a
scenario with 5 drivers, the total training time is going to be
approximately 5 times the fit time of a single driver. Since with
M = 3 the required computational time to train the models is
still reasonable in the following sections we always use models
with 3 GMM components.
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Second, to obtain the optimal combination of gas pedal and
steering features, we vary α from 0 to 1 and evaluate our
method. Having α = 0 is equivalent to only using λS and α =
1 would be equivalent to just using λG. The corresponding
results are presented in Figure 5. As it can be observed, the
way α affects the results varies with the number of drivers. It
is clear that as the number of drivers goes up λS has a more
positive effect on the results, this is in line with the findings
in our previous work [10].

Additionally, knowing that drivers operate gas pedal and
the steering wheel only at parts of their drive, for example
when the road is straight no steering is required, and there
are times that driver lifts their feet from the pedal either to
slow down or to keep a constant speed; At such moments
data from the corresponding signals is not quite informative.
Therefore we also considered dynamically switching between
the models (λG and λS) based on activity in signals (average
energy) however we did not observe significant improvements
in performance.

B. Sensitivity Analysis of Training Window

One of the important factors in driver identification is driver
enrollment. In order to add a new driver to the system, we
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Fig. 6. Identification Performance

need to collect sufficient amount of data from the driver to fit
a model. To find out how much data is enough we perform
experiments by varying the amount of train-data in 5-minute
steps from 5 to 35 minutes of driving data and measure the
performance with a fixed 2 minutes of test-data. The results are
presented in Figure 6a. As one can see 5 minutes of training
data yields poor results, however starting from 10 minutes
and above, performance crosses 90%. From this plot, we can
conclude that with just 10 minutes of driving data we can
obtain good accuracy and as we collect more data from the
driver it is possible to improve the model [19].

C. Sensitivity Analysis of Decision Window

Driving is a repetitive task, however, it takes a few minutes
until one repeats various maneuvers during a driving session.
For example, consider driving on a straight stretch of road,
there is no steering maneuvers and only a few pedal operations.
Therefore to obtain more reliable results, a larger decision
window is required. Moreover, in applications such as theft
detection and comfort, you would want to be able to accurately
identify the driver in the least time possible. Therefore we
evaluate the impact of test-data on performance. To do so we
run experiments with a fixed training data of 20 minutes but
with variable sizes of decision window. We cover variations
from 30 seconds to 5 minutes. A 60 seconds long decision
window leads to good results but starting from 90 seconds for
all scenarios we obtain more than 90% accuracy.

TABLE II
SUMMARY OF RESULTS

Train
Minutes

Decision window
Minutes

Drivers
5 15 35 50 67

15
1 0.943 0.880 0.836 0.825 0.819
2 0.974 0.956 0.940 0.932 0.934
4 0.990 0.987 0.984 0.983 0.983

30
1 0.967 0.932 0.897 0.887 0.877
2 0.990 0.977 0.968 0.963 0.959
4 0.999 0.997 0.996 0.995 0.995

D. Final Results

Here we present a summary of the results obtained in our
experiments. The results are presented in Table II. We selected
two cases, one with 15 minutes of training data to fit the
models representing a use case that not much of data from
drivers is available and one with 30 minutes of training data,
representing a case with higher data availability. For each case
then we present accuracies for three decision window lengths,
1, 2 and 4 minutes. The choices are made to cover a wide range
of applications and accuracies we can get with our solutions
under these varying conditions. We can see that even with
15 minutes of training data, after two minutes we can reach
accuracies of over 95% for 5 and 15 drivers and 94% for 35
drivers. We also include extended experiments with 50 and 67
(the whole data-set). We can observe that with further increase
in number of drivers accuracy slightly decreases, however, this
to large degree can be compensated with collection of more
data both for training and for prediction.

E. Comparison with the previous work

In comparison to our previous work, we significantly im-
proved the accuracy. In particular the accuracy increase by
5.15, 12.02, 21.46 percent for 5, 15, 35 drivers respectively.
Moreover, we reduced the number of signals used down to 2
and 20 features per signal. Another major improvement over
the previous method is the fact that addition of new drivers
to the system is as easy of collecting training data and fitting
two GMMs for it. In our previous work we needed to retrain
every time we need to add a new driver to the system.
This method is also more privacy-preserving because only
using the speed and knowing workplace or residential address
of a person one could infer their destination using only the
speed [20]. Therefore with this method, we cannot learn
anything more than pedal or steering wheel operation patterns,
which do not reveal much information about person’s lifestyle
or identity.



VI. CONCLUSION

In this work, we proposed a methodology for driver identifi-
cation that delivers state-of-the-art accuracy while being com-
putationally light-weight. We only use two signals (gas pedal
position and steering wheel angle) that are easily accessible
from CAN-bus. Inspired by the speech recognition research
we extracted cepstral and spectral features using a sliding
window mechanism. The resulting feature vectors were used to
fit two GMM for each driver (one per signal). At identification
time, feature vectors are extracted from the driving data and
the driver is predicted based on the maximum likelihood
estimation principles. We linearly combine likelihoods from
two models, for which we obtain the optimum ratios (α)
empirically. We provided analysis covering variations in model
parameters, training and prediction conditions. We showed that
with 30 minutes for driving data for training and 4 minutes of
driving data for prediction our proposed method achieves an
accuracy of over 99% for scenarios with 5, 15 and 35 drivers.
For future work we propose investigations on portability of
the GMM models between the vehicles, unfortunately in our
data-set every one drives the same car however, it would be
of interest to see if our proposed method will also work if the
driver changes the cars, this would be of interest to logistic
companies when driver is not tied to a single vehicle or when
an insurance customer changes their car ideally one would
want to be able to use the same model across various vehicles.
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[13] H. Abut, H. Erdoğan, A. Erçil, A. B. Çürüklü, H. C. Koman, F. Tas, A. Ö.
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