
Faculty of Science, Technology and Communication

Masters Thesis

Evaluating the Security of
Connected Vehicles

Author:

Sasan Jafarnejad

Supervisor:

Prof. Dr. Thomas Engel

Reviewer:

Prof. Dr.-Ing. Holger Voos

Advisor:

Dr. Raphaël Frank

A thesis submitted in fulfillment of the requirements

for the degree of Master in Information and Computer Sciences

August 2015

Declaration of Authorship

I, Sasan Jafarnejad, declare that this thesis titled, ’Evaluating the Security of Con-

nected Vehicles’ and the work presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

“I have been impressed with the urgency of doing. Knowing is not enough; we must

apply. Being willing is not enough; we must do.”

Leonardo da Vinci

Abstract

Evaluating the Security of Connected Vehicles

by Sasan Jafarnejad

Interconnected vehicles are a growing commodity providing remote access to on-board

systems for monitoring and controlling the state of the vehicle. Such features are built

to strengthen the owners’ control and provide real-time feedback over their car but at

the same time they impact its safety and security. Even though automotive security

vulnerabilities directly endanger passengers’ lives, they have not yet received sufficient

attention neither from researchers nor car manufacturers.

In order to prove our point, in this work, we analysed security vulnerabilities of two

recently released vehicles, the Renault Twizy, an all-electric and the Toyota Prius a

hybrid electric car.

We leveraged our findings to achieve control over safety-critical subsystems of the ve-

hicles in order to be able to change their standard behaviour. Since these two cars are

based on very different underlying architectures, we performed our study differently for

each car. Therefore, different controls were achieved per car, for instance, braking and

steering for the Prius and motor control for the Twizy. Once we obtained full control

over the powertrain of the Twizy, in order to demonstrate its importance, we developed

a novel mobile application and a web interface to control the car remotely through the

Internet, for which, Open Vehicle Monitoring System an open-source device was used.

Several demonstrations were developed to highlight our findings. Then we discussed the

feasibility of performing such attacks and proposed some solutions to mitigate them. Fi-

nally, since we proved that various attacks are possible against safety-critical subsystems

of vehicles we conclude that vehicles are not ready to be fully connected.

Acknowledgements

First of all I would like to thank my supervisor, Prof. Dr. Thomas Engel, head of the

NetLab along with my reviewer, Prof. Dr.-Ing. Holger Voos, head of the Automation

Research Group at SnT.

I express my deepest gratitude to my advisor, Dr. Raphaël Frank for his full support,

expert guidance, understanding and encouragement throughout my work.

I would like to thank Lara Codeca for her assistance and support.

I would also like to thank all my colleagues at the IGNITE and the VehicularLab for

their support and cooperation, especially, Hossein Arshad, Walter Bronzi and Martin

Kracheel.

I also take the opportunity to thank IEE S.A. for supporting my work by providing the

car used for our experiments.

Finally I would like to thank my parents, my sister and my brothers. They were always

supporting me and encouraging me with their best wishes.

Sincerely,

Sasan Jafarnejad

iv

Contents

Declaration of Authorship i

Abstract iii

Acknowledgements iv

Contents v

List of Figures vii

List of Tables viii

Abbreviations ix

1 Introduction 1

1.1 Motivation . 1

1.2 Objectives . 2

1.3 Structure of the Thesis . 3

2 Background 4

2.1 Electronic Control Units . 4

2.2 In-Vehicle Networks . 6

2.2.1 Controller Area Network . 6

2.2.2 LIN . 8

2.2.3 MOST . 9

2.2.4 FlexRay . 10

2.3 Cyber-Physical Systems . 10

2.3.1 Park Assist . 11

2.3.2 Adaptive Cruise Control . 11

2.3.3 Collision Prevention . 12

2.3.4 Lane Keep Assist . 12

2.4 Vehicular Networks . 12

3 Related Work 14

3.1 Local Attacks . 14

v

Contents vi

3.1.1 CAN Security Challenges . 14

3.1.2 Deviations from Standards . 15

3.1.3 Attack Methodologies . 16

3.2 Remote Attacks . 16

3.3 Counter-Measures Against Security Attacks 18

3.4 Summary . 19

4 Renault Twizy 20

4.1 Introduction . 20

4.2 Experimental Setup . 21

4.3 Experiments and Results . 23

4.3.1 Brute-Force Attack . 24

4.3.2 Exploits . 25

4.3.3 Remote Control . 27

4.4 Attack Scenarios . 29

4.5 Summary . 29

5 Toyota Prius 30

5.1 Introduction . 30

5.2 Experimental Setup . 30

5.2.1 Toyota Prius . 30

5.2.2 Interacting with Electronic Control Units (ECUs) 33

5.3 Experiments and Results . 35

5.3.1 CAN Packet Types in the Prius . 37

5.3.2 Data Collection and Processing . 38

5.3.3 Attacks using Normal Packets . 39

5.3.4 Attacks using Diagnostics Packets 44

5.4 Attack Scenarios . 47

5.5 Summary . 48

6 Discussion 49

6.1 Feasibility Analysis . 50

6.2 Improving Security and Safety . 51

6.3 Non-Security Applications . 52

7 Conclusion 53

Bibliography 55

List of Figures

2.1 A typical Engine Control Module . 5

2.2 CAN bus frame . 6

2.3 CANopen . 7

2.4 Networks and ECUs in a car . 9

2.5 FlexRay Communication Cycle . 10

4.1 Renault Twizy . 20

4.2 Twizy Experimental Setup . 21

4.3 OVMS Block Diargram . 22

4.4 OVMS Circuit Board and PICkit . 22

4.5 Throttle voltage conversion map . 26

4.6 Web Application . 27

4.7 Android Application . 28

5.1 Toyota Prius CAN bus . 32

5.2 ECOM Cable Harness Schematics . 34

5.3 ECOM Cable . 34

5.4 Our Customized ECOM Cable . 35

5.5 Prius Experiments Diagram . 36

5.6 ACC Speed Graph . 39

vii

List of Tables

2.1 Automotive Communication Bus Systems 11

4.1 Access Levels . 24

4.2 Gear State . 26

4.3 Remote Command Set . 28

5.1 Different Buses and ECUs using them . 33

5.2 An example of CAN packet - Current Speed 37

viii

Abbreviations

API Application Programming Interface

DLL Dynamic Link Library

UCSD University of California, San Diego

TCM Transmission Control Module

PCM Powertrain Control Module

TCU Telematics Control Unit

GPS Global Positioning System

CAN Controller Area Network

MOST Media Oriented Systems Transport

LIN Local Interconnect Network

ECM Engine Control Module

ECU Electronic Control Unit

ITS Intelligent Transport Systems

DSRC Dedicated Short-Range Communications

IoT Internet of Things

WAVE Wireless Access in Vehicular Environments

OEM Original Equipment Manufacturer

ICT Information and Communication Technologies

OBD On-Board Diagnostics

OVMS Open Vehicle Monitoring System

HEF High Endurance Flash

SnT Interdisciplinary Center for Security, Reliability and Trust

SSH Secure Shell

SRAM Static Random Access Memory

UL University of Luxembourg

V2V Vehicle to Vehicle

V2I Vehicle to Infrastructure

ix

Abbreviations x

DLC3 Data Link Connector 3

HSD Hybrid Synergy Drive

HVB High Voltage Battery

IPA Intelligent Park Assist

IPAS Intelligent Park Assist System

LKA Lane Keep Assist

ACC Adaptive Cruise Control

PCS Pre-Collision System

ABS Anti-lock Brake System

ESP Electronic Stability Control

KWP2000 Keyword Protocol 2000

UDS Unified Diagnostic Services

PCI Protocol Control Information

USB Universal Serial Bus

WMA Windows Media Audio

RKE Remote Keyless Entry

TPMS Tire Pressure Monitoring System

RFID Radio Frequency IDentification

RDS Radio Data System

DAB Digital Audio Broadcast

HSM Hardware Security Module

TPM Trusted Platform Module

IDS Intrusion Detection System

ICE Internal Combustion Engine

GM General Motors

SDO Service Data Object

PDO Process Data Object

For/Dedicated to/To my. . .

xi

Chapter 1

Introduction

Today connected cars are already on the market. Infotainment systems come pre-

equipped with Wi-Fi interfaces and SIM cards with special data plans that link the

vehicle to the manufacturers servers for various applications. They provide many fea-

tures ranging from checking the status of your car (e.g. state of charge, oil temperature)

to pushing over-the-air software updates or even controlling some of the car’s compo-

nents (opening/closing doors, rolling up/down windows, e.g.) and all this is just before

the market gets flooded by a new breed of cars that support Android Auto1 and/or

Apple CarPlay2. These functions require access to the Controller Area Network (CAN)

bus and could potentially bring an extra risk to the table since it directly connects the

car to the Internet. Along with the increasing complexity in the electronics of vehicles,

the number of ECUs and their importance in monitoring the different subsystems of a

car has grown steadily over the last decade. In addition, modern vehicles are able to

communicate with other devices using wireless interfaces potentially exposing the inter-

nal network of the car to vulnerabilities. It is our belief that the current state-of-the-art

internal communication systems used in modern cars, are not ready to handle threats

from external attackers. In this work our goal is to prove that these vulnerabilities exist

and demonstrate how such vulnerabilities can be used to threaten passengers’ safety.

1.1 Motivation

This work is motivated by the very large number vulnerable cars available on the market

and the very small number of papers published on automotive security.

1Android Auto: https://www.android.com/auto/
2Apple CarPlay: http://www.apple.com/ios/carplay/

1

https://www.android.com/auto/
http://www.apple.com/ios/carplay/

Chapter 1. Introduction 2

Just over the past month (August 2015) we witnessed multiple news about vulnerabili-

ties discovered in the cars. First, General Motors (GM) recalls 1.4 million cars due to a

remote attack that could take full control over the car through the Internet [1]. Second,

a security researcher built a device called OwnStar, it is a small handmade device that

can be used to hack RemoteLink, the GM’s OnStar’s mobile application enabling the

attacker to unlock or track vehicles [2]. Third, Volkswagen sued researchers for two years

in order to prevent them from revealing vulnerabilities in their Megamos Remote Keyless

Entry (RKE) systems [3, 4]. Finally the latest work from Koscher et al. shows remote

controlling the brakes of a Corvette is possible through an insurance-box3 attached to

the car’s On-Board Diagnostics (OBD) port [5].

Among those few publications, [6] and [7] by Koscher and Checkoway et al. extensively

explore local and remote (respectively) vulnerabilities on real cars. They showed that

our vehicles are extremely vulnerable to security attacks. Moreover starting from 2013

two security researchers, Miller and Valasek, started their work on automotive security

and every year they present their findings in the BlackHat Conference. Their first work

on the Toyota Prius and the Ford Escape was our inspiration to carry out this work [8].

Considering the fact that these are the only publications that pursued the same goal as

ours, and due to the magnitude of the issue and importance of the automotive security,

it is clear that more research has to be done in this area.

1.2 Objectives

Nowadays security of automobiles has become an important issue. This is similar to

personal computers more than a decade ago, when computers started to connect to the

Internet, while they were not well prepared for the transition; the difference is that now

instead of personal information, the physical safety of people is at risk. Cars are getting

more and more connected, while every manufacturer bases their security measurement

on the fact that no one will try to attack a car. An assumption that is no longer true.

In this thesis our goal is demonstrate and highlight the importance of security in au-

tomobiles, develop hands on expertise in the field and by acquiring knowledge on the

security attacks, pave the way for finding viable solutions for the problem.

In order to realise our goal we structure this thesis into two sub-projects. The first

project is a remotely controlled vehicle based on the previous work done by Julien

Nozais (a former intern in the VehicularLab4) on a Renault Twizy. The second project

is experimental security analysis on a Toyota Prius.

3A device provided by insurance companies that customers who attach them to their cars, will receive
discounts under certain circumstances

4Vehicular Lab: http://www.vehicularlab.uni.lu

http://www.vehicularlab.uni.lu

Chapter 1. Introduction 3

1.3 Structure of the Thesis

The remainder of this Thesis is organised as follows. In Chapter 2 we provide the

necessary background information on the concepts used in the work. Next, in Chapter

3 we provide a literature review. Then in Chapter 4 we present our work on the Twizy

and how we succeeded to control critical systems remotely. In Chapter 5 we describe our

approach to the Prius and present the its vulnerabilities. Then in Chapter 6 we discuss

our work and propose some improvements. Finally in Chapter 7 we conclude the Thesis

and provide directions for future work.

Chapter 2

Background

In this chapter we briefly present technologies commonly used in today’s connected cars

in order to familiarize ourselves with the concepts used in the rest of the report. We

start from Electronic Control Units (ECUs) then we introduce a number of in-vehicle

networking technologies that are used to provide inter connection between the ECUs.

Afterwards we discuss cyber-physical systems and finally, vehicular communication sys-

tems.

2.1 Electronic Control Units

An ECU designates an embedded system that controls one or more subsystems of a ve-

hicle. Modern vehicles are controlled electronically instead of merely mechanically. The

ECU gathers data from on-board sensors, process it and then sends out instructions to

other vehicle subsystems. Each ECU operates solely on its own firmware. However, to

achieve certain complex operations cooperation between ECUs is required.

The internal architecture of an ECU is not different from a typical embedded system,

except that they need to be extremely robust and reliable while following strict stan-

dards. Each ECU typically consists of a microprocessor, small amounts of memories

(SRAM, EEPROM and Flash) and a set of input and output peripherals. Most ECUs

are equipped with communication peripherals such as LIN, CAN, I2C, I2S. In addition

many ECUs have a boot-loader that gives them re-flashing features. A Boot-loader can

be thought of as a very small program that only has the purpose to replace the current

firmware with the new one provided through CAN or other means of communication.

While there is no universal classification for the ECUs, one can categorise them by their

function as follows [9]:

4

Chapter 2. Background 5

Figure 2.1: A typical Engine Control Module
Picture from Freescale

Power train ECUs that perform engine and transmission operations. Two of the most

important ECUs in this category are the Engine Control Module (ECM) and the

Transmission Control Module (TCM). However sometimes both of these con-

trollers are combined into the Powertrain Control Module (PCM).

Safety ECUs that control in-vehicle safety systems. Safety systems may be passive or

active. Passive systems are such as airbags, pre-crash seat belt tightening or seat

belt warning lights, whereas active safety systems prevent a crash or minimize its

damage by forcibly altering vehicle operations, such as Electronic Stability Control

(ESP), Adaptive Cruise Control (ACC) and Anti-lock Brake System (ABS).

Comfort ECUs in charge of providing comfort for driver and passengers. Park assist,

automatic headlight adjustment and air-conditioning are among those.

Infotainment ECUs that handle audio, video, navigation. These systems are gaining

more popularity. Turn by turn navigation, Radio, CD/DVD players, Bluetooth

streaming and smartphone integration are just a part of it. Apple CarPlay and

Android Auto fall into this category.

Telematics Telematics Control Unit (TCU) is in charge of tracking the vehicle and

commonly consists of Global Positioning System (GPS) receiver and a mobile com-

munication interface.

Chapter 2. Background 6

Nowadays mid-end cars are controlled with around 30 to 50 ECUs, this range is between

70 to 100 for a high-end car. This many processors run on over 100 million lines of

code [10]. Without doubt with an increase in complexity of the system and the code,

vulnerabilities are more likely to occur. In such cars a malicious tampering with a vital

ECU could seriously compromise the car’s safety on the road and lead to a potential

accident. Therefore security measures are crucial for this new breed of vehicles.

2.2 In-Vehicle Networks

In the past, car components were wired independently to each system they needed to

communicate with, resulting in enormous lengths of electric cable used. This led to an

increase of the cost and weight of the car and made maintenance more difficult therefore

several technologies came into existence to solve such problems. In this section we

present an overview of the most common automotive data networking technologies.

2.2.1 Controller Area Network

Figure 2.2: CAN bus frame - Picture from Wikipedia.org

Controller Area Network (CAN) was developed by Robert Bosch GmbH in the eighties.

The CAN is a multi-master serial bus, which allows micro-controllers in a vehicle (gen-

erally ECUs) to exchange short messages at a maximum rate of 1 megabit per second.

All the devices on the CAN bus are usually connected through a twisted pair of wires

and each message is broadcast to every device on the bus. All of the connected devices

are able to send and receive messages but not at the same time.

In CAN there is no notion of identification of the source and destination of the messages.

Each message has an identifier (ID), which identifies the purpose of the message and its

priority. Priorities are resolved based on an arbitration method that requires all nodes

to be synchronised to simultaneously sample every bit on the network. Smaller IDs win

the arbitration and receive a higher priority.

There are four different message types on the CAN bus:

Chapter 2. Background 7

Figure 2.3: CANopen device structure

Data Frame A frame that is used to broadcast a data payload between nodes.

Remote Frame A frame that requests the transmission of data from a particular node.

Error Frame The error frame is sent by a node that has detected an error in a message

in order to ask the sender to retransmit that message.

Overload Frame The overload frame is sent by a busy node to request an extra delay

between messages.

As there is no central coordination defined by the CAN standard, nodes can be added

or removed without impacting the network [11].

CANopen

The CAN standard (ISO 11989) only defines the OSI layers 1 and 2, but in practice

these are already being handled solely by the hardware (CAN controller), which is of

great help for the engineers. However a flexible and highly configurable embedded net-

work based on CAN, cannot be achieved without employing higher layer protocols, and

CANopen is one of the existing solutions.

CANopen specifies a set of device and application profiles. The device profiles specify

the interface of a logical device and the application profiles specify a set of virtual device

interfaces. CANopen devices may implement one or several virtual devices. Devices im-

plementing the same set of profiles are partly or completely exchangeable. This allows

a flexible integration of CANopen devices and enables interoperability and interchange-

ability between multiple devices.

Every CANopen device is described by an Object Dictionary (OD). An OD describes a

Chapter 2. Background 8

group of objects, each of them addressed by a 16-bit index. To access individual entries

of the data in each object an extra 8-bit subindex is needed. The OD encloses all the

parameters describing the device and its behaviour on the network. The entries inside

objects are defined by parameters such as Object Name, Name, Type, Attribute, M/O.

Here we give a short explanation for each of the parameters:

Index The 16 bit address of the entry

Subindex The 8 bit address of the entry in the object

Object name Symbolic type of the entry such as array, record or simple variable

Name A string describing the entry

Type gives the datatype of the entry

Attribute defines the entry access rights, whether it is constant, writable and/or read-

able

M/O specifies whether the entry is mandatory or optional

CANopen defines several communication objects to achieve various goals such as network

management, timing, synchronization and handling emergency states. But the most vital

communication objects are Service Data Object (SDO) and Process Data Object (PDO).

An SDO gives a node read and/or write access to objects on another device’s OD knowing

its index and subindex. In SDO, the first node is the client and the target device is the

server. PDO is used to transfer real-time data. Although there are several configurations

available for this kind of messages, in its simplest form the producer node broadcasts

a certain object at a predefined rate and one or more nodes can be its consumer. In

SDO a node requests to read from, or write to an object but in PDO data is being

broadcast at certain intervals or is being triggered by an event. The simplified structure

of a CANopen device is depicted in Figure 2.3 [12].

2.2.2 LIN

Local Interconnect Network (LIN) is a low-speed serial network protocol that is mainly

used in automobiles. The LIN came into existence around 2000s, in the late 90s as the

number of ECUs and electronic components in the car grew, implementing the CAN

for all of them was no longer cost efficient therefore, car manufacturers teamed up and

developed LIN as an cheap alternative to be used for components that does not require

high data rates.

Chapter 2. Background 9

Figure 2.4: Networks and ECUs in a car [13]

LIN is a broadcast serial network that consists of one master and up to 16 slaves.

Master initiates all the messages and at most one slave replies to a given message iden-

tifier. Since all the messages are initiated by the master there is no need for a collision

detection mechanism. LIN networks are usually connected to an ECU on a CAN bus

that acts as a backbone network. LIN provides single wire communications up to 19.2

kbit/s and its data frame size can be varied from 2 to 8 bytes [14].

2.2.3 MOST

Media Oriented Systems Transport (MOST) is a high-speed network technology opti-

mised for the multimedia applications in automotive industry. The MOST bus uses a

ring topology and synchronous data communication to transport audio, video, voice and

data signals. The MOST can operate under three data rates, 50, 100 and 150 megabits

per second. Moreover a MOST network is able to handle up to 64 MOST devices in

a ring topology. MOST allows devices to attached and removed from the network in a

Plug-&-Play fashion.

The MOST specifications defines all the seven layers of the OSI model. MOST is widely

used by almost all the car manufacturers, a reason for that might be its standard

Application Programming Interface (API)s. System developers do not need to be in-

volved in the details of the protocol, because everything between the physical and the

Chapter 2. Background 10

application layer is handled by the driver software that is also known as MOST Network

Services [15].

2.2.4 FlexRay

FlexRay is an automotive communication network protocol by the FlexRay consortium.

The main goal behind its design is to be faster and more reliable than CAN, as a result it

is also more expensive than CAN. FlexRay supports high data rates, up to 10 megabit

per second, and in order to provide fault tolerance it incorporates two independent

data channels. When one channel is not usable, communication continues through the

other link but with a lower data rate. FlexRay can be configured either with a bus

or star topology and it supports both electrical and optical physical layers. FlexRay

operates based on TDMA, each communication cycle is divided into two sections, the

statically defined schedule (ST) and the dynamic schedule (DYN). The ST segment

provides realtime communication, while the DYN segment is event based, similar to

CAN. FlexRay can operate on three different modes, purely static, purely dynamic and

mixed mode. A mixed mode communication cycle is shown in Figure 2.5 [16, 17].

Figure 2.5: FlexRay Communication Cycle
Diagram courtesy of Nicolas Navet

2.3 Cyber-Physical Systems

Cyber-physical systems are the kind of features in the cars that allows the car to take

some decisions or carry on an action that has significant physical outcome. These fea-

tures are getting more prevalent because they make tasks easier for the driver and they

Chapter 2. Background 11

Table 2.1: Automotive Communication Bus Systems [18]

Bus LIN CAN FlexRay MOST

Optimized For Cheap/Sub-bus
Soft

Real-time
Hard

Real-time
Multimedia

Example
Applications

Door Locks
Power Windows

Lights
Rain Sensor

ABS
ESP

Engine control
Gear box

Brake-by-wire
Steer-by-wire
Shift-by-wire

Entertainment
Navigation

Mobile Office

Access Control Polling CSMA/CA
TDMA

FTDMA
TDMA

CSMA/CA

Transfer Mode Synchronous Asynchronous
Synchronous

Asynchronous
Synchronous

Asynchronous
Data Rate 20 kBit/s 1 MBit/s 10 MBit/s 150 MBit/s

Redundancy None None 2 Channels None

Error Detection
Checksum
Parity bits

CRC
Parity bits

CRC
Bus Guardian

CRC,
System Service

Physical Layer Single-Wire Dual-Wire
Dual-wire

Optical Fiber
Optical Fiber

make the driving safe. However the same technologies can be used by an attacker to

take control over certain onboard safety critical subsystems.

2.3.1 Park Assist

Park Assist is a system that automatically parks the car, it becomes very useful while

parking in tight parking spots. Park assist is named differently by every automaker

but all of them do the same thing possibly by different methods. There is a ECU that

is in charge of the parking and using multiple sensors and cameras it calculates the

required steering wheel angles and asks the ECU in charge of the steering wheel to

turn the steering wheel to the calculated angle. The Park assist ECU reads the new

sensory informations and calculates new values. This procedure continues until the car

is successfully parked.

2.3.2 Adaptive Cruise Control

Adaptive Cruise Control (ACC) is designed to remove burden of maintaining a constant

speed and distance from the driver’s shoulders. When ACC is activated, a radar or laser

beam continuously measures the distance to the car in front and also its speed. When

the car in front slows down, ACC applies the brakes and slows down the car, and when

the car in front speeds up, ACC applies more throttle to speed up the car again to the

desired speed. Based on the car and the technology used, the ACC in some cars only

works on speeds higher than a threshold, that is usually around 50 kph. In other words

it can only be activated while the speed is over the threshold and as soon as speed drops

Chapter 2. Background 12

to below that, the ACC deactivates itself. However, in more recent cars, the ACC also

works in very low speeds, therefore in occasions such as traffic jams, traffic lights, the

ACC can do a full stop and go.

2.3.3 Collision Prevention

Collision prevention systems are made to prevent or reduce the impact of accidents.

Using certain sensors, usually an ECU detects when a collision is imminent and sends

appropriate packets to the brakes to activate them.

2.3.4 Lane Keep Assist

Lane Keep Assist (LKA) which, is named differently by every manufacturer, is a system

that if activated it tries to keep the car on the lane. Road lanes will be detected

using a camera and its corresponding ECU. Then it sends proper messages to activate

notifications for the driver and the steering wheel for adjustments.

2.4 Vehicular Networks

A crucial property of a connected vehicle is its connection to the Internet and the en-

vironment around it. Because cellular data is the most widely deployed technology for

data access and it is already at disposal, it is selected by most companies to provide the

Internet for their cars. Moreover it is worth mentioning that currently many manufac-

turers provide a connection between the car and their servers but do not provide the

Internet to the passenger.

Usually each company has a propriety service and branding, for example General Motors’

OnStar1 or Toyota’s SafetyConnect2. Such systems provide a good amount of conve-

nience and safety services, however these services are not free and the car owner has to

pay a yearly subscription fee to activate them. In order to have a better understanding

we take OnStar as an example. OnStar provides a handful of services such as, automatic

collision notification, stolen vehicle assistance, roadside assistance, remote door unlock,

remote horn and light flashing and many other features that are also available through

RemoteLink, their official smartphone application. And in its latest addition OnStar

will continuously send sensor data from the car to the GM’ servers and if a certain part

malfunctions, it notifies the driver by in car alert or text message [19]. Moreover with the

1OnStar: https://www.onstar.com/us/en/home.html
2SafetyConnect: http://www.toyota.com/safety-connect/

https://www.onstar.com/us/en/home.html
http://www.toyota.com/safety-connect/

Chapter 2. Background 13

new advances in the cellular technology and advent of 3G and 4G sufficient bandwidths

are easily obtainable. This has lead to emergence of the real connected cars that are

constantly connected to the Internet and also provide Wi-Fi hotspot to the passengers.

Even though cellular networks inherently are not vehicular networks, but if we take into

account the vision of Internet of Things (IoT), perhaps in the near future connected cars

will be able to communicate to each other and the environment around them (Road-

side infrastructures, Intelligent Transport Systems, etc.). Moreover there are already

standards and technologies that are designed to solve the Vehicle to Vehicle (V2V) and

Vehicle to Infrastructure (V2I) communication issues. Dedicated Short-Range Commu-

nications (DSRC) combined with Wireless Access in Vehicular Environments (WAVE)

that covers IEEE 1609 family of standards will soon be an integral part of the every car.

Manufacturers like Cadillac already announced that their products will support these

standards. Furthermore V2X communications is about to be legislated in the United

States before 2017, this means that soon cars will be obliged to employ these technolo-

gies and V2X becomes widespread [20]. V2X has countless applications that help reduce

traffic, road accidents and many more, but at the same time, it gives attackers a whole

new level of opportunities.

Chapter 3

Related Work

In this chapter we focus on three distinguishable works that each cover an important

aspects of automotive security. First we introduce Local Attacks based on the work [6]

by Koscher et al., then we present a short overview of Remote Attacks by referencing

[7] a work by Checkoway et al. and lastly, we summarise some of the solutions and

Counter-Measures Against Security Attacks based on [21].

3.1 Local Attacks

In [6], authors experimentally investigate security issues in modern automobiles. Studies

were performed on two cars from the same brand and model. This decision was made in

order to rule out dependency of the experiments to one vehicle instance. By successfully

performing the attacks on both of the cars, the results are more likely to be conclusive.

The cars in question are mid-range sedans equipped with no more than 30 ECUs. The

research is done in three phases, first on a lab bench by taking out every ECU under

study. Then on a stationary car secured on a jack stand, and lastly, on-the-road in a

decommissioned airport.

3.1.1 CAN Security Challenges

Koscher et al. state that CAN by design does not incorporate any security measures.

Here we highlight some of the security issues on the CAN buses:

Broadcast Nature CAN is a broadcast bus, every device on the bus physically and

logically has to receive the CAN messages. However it is up to the device to decide

whether or not act on it.

14

Chapter 3. Related Work 15

Fragile to DoS CAN bus is very fragile to Denial of Service attacks. Due to the fact

that a message with smaller ID always wins the arbitration, continuously sending

messages with very low IDs can prove network unusable. A more efficient approach

that demands low level access to the node is to activate ”dominant” signal and

never release it, this will make the CAN completely unusable.

No Authentication In CAN bus there is no way to authenticate (by the CAN protocol

itself) or identify the source of the message. This makes room for spoofing attacks.

Weak Access Control Although for diagnostic and re-flashing purposes there are

higher layer protocols that manage access to ECUs, but still they are very weak.

As an example there is a 16 bits long seed/key challenge mechanism for authen-

tication, because system lets an ECU authenticate once in every 10 seconds, an

attacker who has enough time can find the key for every ECU in 7 days and

compromise the car.

3.1.2 Deviations from Standards

It is known by the industry and international societies that CAN bus is not secure

enough and manufacturers should take some precautions in their ECUs. Therefore in

the standards manufacturers are advised to follow certain guidelines but, it is not the

case in practice. Koscher et al. show that many of these guidelines are not respected in

today’s mass produced cars. To exhibit the issue we list a number of them here:

• Although standards limits any dangerous events, such as disable communication

on unsafe situations, it was possible to shut down ECM while driving with 40 mph.

• Standards state re-flashing should not be possible while driving, but it is proven

not be the case in real life.

• Access to critical memory areas in the ECUs should be forbidden, but has shown

some ECUs does not respect this and re-flashing keys can easily read from them.

• Standards advise manufacturers to never allow an ECU that is available on both

low-speed and high-speed buses, re-flashed from the low speed bus. This is due

to the fact that safety-critical systems are on the high-speed bus and by allowing

re-flashing from low-speed bus (that is more accessible) increases the chances of

compromising the high-speed bus. This also was not the case in the experiment

cars.

These are very simple precautions that many manufacturers have failed to follow and

this gives the chance to attackers to be able to easily gain control over a car.

Chapter 3. Related Work 16

3.1.3 Attack Methodologies

In Koscher et al. point out that in order to gain information and find vulnerabilities

in a car three attack methodologies exists; a) Sniffing and Target Probing b) Fuzzing

c) Reverse Engineering . Here we briefly explain them:

Sniffing and Target Probing In this approach while attackers sniff the network, they

perform different tasks with the car and examine the sniffed traffic. For example

accelerating, braking, lock/unlocking doors and more. Although this approach is

not very sophisticated, it can be very effective in many occasions also we are going

to take the same approach in the Chapter 5.

Fuzzing Is a testing method that is generally used for softwares, but here it is used

against the car and its ECU, it works based on the idea that ECUs will respond

to an ID and its data if it is a supported command. So we can keep sending

different message IDs with random data and examine the ECU to see if it reacts

to it. This can be very dangerous if done against multiple ECUs in a uncontrolled

situation, however it is very effective when the target ECU is detached from the

network. Having said that we will not try to perform this method because we are

not allowed to remove the ECUs.

Reverse Engineering This method is very complex and time consuming and usually

it is not worthy unless we need a feature that is not implemented in the car, like

making a bridge between low and high-speed buses. In this approach one first

needs to download the firmware off the target ECU and then using the right tools

disassemble and analyze the code, then change the segments required and re-flash

it back to the ECU

Using the methods and flaws discovered in this section authors could to systematically

control engine, brakes, heating, cooling, lights, instrument panel, radio, locks, and so

on. This proves internal automotive network is not protected from an attacker who is

able to physically access the car. They even present an attack that embeds a malicious

code in an ECU, that erases any evidence of its presence after the crash.

3.2 Remote Attacks

Checkoway et al. in [7] discuss feasibility of remote attacks and present a handful of

experimental remote attacks. One argument about local attacks such as those mentioned

in the previous section is that if someone has physical access to the car, they can do

Chapter 3. Related Work 17

anything with it, even cut the brake lines. This argument is partially valid, local attacks

maybe demand physical access to the car, but they provide a much wider range of

attacks than just simply cutting the brake lines. However Checkoway et al. show that

remote attacks are also as feasible as local attacks, whereas they need better skill sets

and deeper knowledge of the system. This section shows us a wider picture of the

automotive security attacks. Since our work does not involve remote attacks we only

bring a short summery of that work.

Remote attacks can fall into three categories, that we go through them one by one and

briefly describe and give examples from the attacks performed by Checkoway et al.:

1. Indirect Physical Access - There are many means that allow physical access to our

cars without us realizing it. It can be when the car is in workshop, Entertainment

systems, through disc, USB and iPod or smart chargers for electric cars may have

a communication link that can be used.

• Pass-Through devices used in workshops are usually out-dated Windows

based devices that can easily compromised, in this work authors managed

to take over the device through vulnerabilities on its Wi-Fi connection

• Through a hidden feature in the CD player’s firmware, it made possible to re-

flash the CD player to incorporate a manipulated firmware or just by playing

a carefully crafted WMA file, it is possible to send arbitrary CAN messages

hence perform attacks similar to local attacks.

2. Short Range Wireless Access - Short range wireless communications include, Blue-

tooth, RKE, TPMS, RFID, Wi-Fi and DSRC. All of these technologies in one way

or another have the potential to be used by an attacker in order to gain access to

the car.

• Vulnerabilities discovered in the pairing mechanism of the Bluetooth that al-

lows attackers to execute arbitrary code and compromise the telematics sys-

tem (In the experimented car the Bluetooth module is part of the telematics

system)

• TPMS although could not be used directly to execute code, but proved to be

useful for triggering a previously implanted malicious code.

3. Long Range Wireless Access - This category can be divided into two sub sections, a)

non addressable channels, such as RDS, DAB, Satellite Radios and b) addressable

channels that is Remote Telematics System (See Section 2.4 for more information).

• Combined with the attack on the multimedia system it is possible to activate

planned attacks upon reception of a pre-defined signal. Assuming a large

Chapter 3. Related Work 18

number of infected cars, an arbitrary attack can be triggered by sending a

signal through the radio. For example, a 5 watts Radio Data System (RDS)

transmitter can cover the radius of 5 km.

• It was shown that Telematics system can be dialed and attacker can take

control over the telematics system just by playing a carefully generated audio

file. This is because telematics system uses an analogue modem for certain

functions therefore, by sending crafted payloads one can take advantage of

vulnerabilities in the demodulator code. In the experimental car, telematics

system has access to both CAN buses hence pose the system to the most

dangerous and complex attacks.

Before we conclude this section it is worth noting that Checkoway et al. believe most

of the attacks implemented in their study are feasible because of the security flaws in

the glue codes, manufacturers obtain their components from different vendors, and they

have to make these components work together, most of the security flaws are result of

this process, and can easily avoided just by using secure functions and following the

software security guidelines.

3.3 Counter-Measures Against Security Attacks

In [21], the authors provide an overview of the attacks and security issues in the auto-

motive environment and then provide a summary of the proposed solution for enhancing

security of the automotive networks. These solutions can be divided into three groups,

for each group we provide examples and highlight their strength and weaknesses:

Cryptography With the use of cryptographic authentication and integrity checks, it

is possible to encrypt the messages therefore ECUs that do not posses the right

keys can not even read those messages. Among these solutions we can mention

CANAuth [22] and Libra-can [23] as two broadcast authentication protocols for the

CAN bus. However cryptographic solutions are expensive in terms of computation

therefore result in delays in the network and threaten the realtime applications.

Software Integrity Second category of solutions try to ensure the integrity of the

software. This is done in a similar fashion as the personal computers, through

Trusted Platform Module (TPM) or similar hardwares such as Hardware Security

Modules (HSMs). For instance Wolf et al. [24] present the design, implementation

and evaluation of a vehicular HSM for the communication among the ECUs. An-

other approach is the use of virtualization in automotive environment, to keep the

Chapter 3. Related Work 19

security critical features separated from not trusted modules. The barrier against

using such solutions is that they require more powerful and complex hardware that

results in higher prices for the ECUs.

Anomaly Detection Last method discussed for providing security in the automotive

environments is the use of anomaly detection algorithms. Many approaches have

been considered so far that will be summarized as below:

• A module that prevents the nodes from sending their messages with very fast

rates, so prevents flooding.

• Each node checks if any other nodes in the network is trying to impersonate

it. In CAN this is easy because nodes are always listening to the bus and can

easily garbage selected messages (For example by sending dominant signal

over the CRC bits). But this method demands firmware changes in all nodes.

• Feature based Intrusion Detection System (IDS) solutions. Can be accurate if

they are well designed, but are limited to the known attacks and also require

regular updates.

• Anomaly based IDS solutions. More complex to design, but they can be very

effective especially against unknown attacks.

Lastly Studnia et al. present some ideas about a state-full IDS that combines the features

of anomaly based detection and current state of the ECUs to decide whether an attack

is in progress or not.

3.4 Summary

In this chapter we reviewed the literature on different kinds of attacks on automobiles.

First we discussed local attacks based on a work by Koscher et al. that is also closest

work to ours in the academic world. There is also a great work by Miller and Valasek [8]

that does not follow the academic track nevertheless since they worked on the Toyota

Prius, we used it as a technical reference for the Chapter 5. Second we presented remote

attacks inspired by a work from Checkoway et al. in order to show the extent of the

remote attacks and as a proof that they do exist. Finally, we discussed some of the

possible solutions explored in the previous research and presented their strength and

weaknesses based on a survey by Studnia et al..

Chapter 4

Renault Twizy

Figure 4.1: Renault Twizy

4.1 Introduction

In this chapter we present the steps required to compromise a Renault Twizy and drive

it remotely, only using a small device attached to the OBD port. We start by describing

our experimental setup which, mainly consists of the Open Vehicle Monitoring System

(OVMS) and the Renault Twizy. Then, we explain how we take advantage of the

weak authentication method used by the Motor controller ECU and gain access to read

out, and change its configurations. Next, we present the exploits achieved through

re-configuration of the motor ECU an after that, we present the Android and Web

applications developed in order to demonstrate our findings. Finally we discuss the

possible attack scenarios using the Open Vehicle Monitoring System (OVMS) and our

recently discovered vulnerabilities.

20

Chapter 4. Renault Twizy 21

4.2 Experimental Setup

(a) A (b) B

Figure 4.2: Experimental Setup

For all our experiments we used a factory standard Renault Twizy 80 (Figure 4.1).

The Twizy is a compact electric quadricycle for two passengers, including the driver.

The motor controller ECU that is mounted in the Twizy is produced by the UK based

company Sevcon1, which manufactures controls for electric vehicles. The actual model

installed in the Twizy is a Sevcon Gen4 controller. The Twizy is equipped with an

additional backseat computer. Since this additional computer requires a specific hard-

ware modification, it will not be used to assess the feasibility of an attack. Although

Twizy is it is an atypical vehicle, it can be seen as a simplified version of a modern

car as it shares a similar system architecture. For our study the most important re-

quirement is the presence of a standard CAN bus for the communication between the

different components. Therefore the vulnerabilities examined can be common among

different vehicles and brands that share the very same internal systems, for instance

Tesla Roadster also uses Sevcon Gen4, thus it is very likely that both of the cars share

the same vulnerabilities. Access to the internal CAN bus is available via the On-Board

Diagnostics (OBD) port. Given the increasing number of ECU in cars over the past

few decades, manufacturers started to add self-diagnostic capabilities to their vehicles in

order to help technicians retrieving the status of the subsystems and determine faults.

The OBD, or more accurately OBD-II (EOBD in Europe) is a standardised interface

and it is mandatory by law in both the United States and Europe since 1996 and 2001,

respectively.

In order to interact with the CAN bus and the attached systems, a variety of tools can be

purchased without any requirements. For our experiments we choose the OVMS. This

tool is open source and open hardware and is equipped with a GSM/GPRS module, a

GPS and a serial port that allows us to configure the device.

1Sevcon website: http://www.sevcon.com/

http://www.sevcon.com/

Chapter 4. Renault Twizy 22

Microcontroller
PIC18F2685

GSM/GPRS
GPS

SIM908

CAN
Transceiver
MCP2551

CAN
OBD-2

Serial
Port

GSM
Antenna

GPS
Antenna

OVMS

Figure 4.3: OVMS Block Diagram

Figure 4.4: OVMS Circuit Board and PICkit

This tool was originally developed by and for owners of the Tesla Roadster, a high-end

electric vehicle. It allows the user to monitor the status of the car battery, the last

known GPS location, and to control some of the car’s features such as the lock status of

the doors or the heating system through their smartphones. Since the first version, the

Chapter 4. Renault Twizy 23

developer community has been working to increase the number of vehicles supported

by the OVMS. The Renault Twizy was the second vehicle to be implemented, although

it does not support the same range of features since it has fewer electronic systems.

Compared to a USB or Bluetooth OBD adapter, the OVMS allows to extend the range

of interaction with the CAN bus by using the cellular network. Moreover, due to open

source nature of the OVMS, the source code is openly accessible online [25]. We used

it both as a way to acquire knowledge on how the internal systems of the Twizy work,

and as an experimentation platform.

Given the presence of a serial port on the OVMS module, we used the backseat computer

as a Wi-Fi proxy to speed up our experiments and avoid relying on the GSM signal

reception. The connection between the two was made with a USB to RS-232 adapter

(See Figure 4.2 A). In this setup, the module needs to boot into debug mode, during

which, the output messages are sent through the serial port instead of the cellular

network. This allowed us to connect to the backseat computer via Wi-Fi and send

messages directly to the OVMS through the serial port. Instead of operating with a

serial terminal application we developed a program in C called OVMS Controller that

was installed on the backseat computer. This enabled us to automate the communication

with the module, and to perform tasks that would otherwise be time consuming and

redundant.

In addition to the serial port, one can interact with the OVMS via text messages or

through the Internet using the available mobile applications (iOS and Android). When

using the mobile applications, the module connects to a public server that acts as an

Internet proxy to relay commands between OVMS and the client. A default server is

hosted by the Tesla Motors Club2 for convenience. Messages going through the Internet

use a Base64 encoding scheme and are encrypted using RC4 stream cipher [26]. To

reduce latency and to have a higher degree of flexibility, we deployed our own server

locally.

4.3 Experiments and Results

As introduced in the previous section, the main ECU of the Twizy is the Sevcon Gen4

controller. We will now describe how we managed to access the main configuration

parameters. The Sevcon Gen4 uses the CANopen (See Subsection 2.2.1 for details) as

higher layer protocol over the CAN bus. This allows Gen4 to be able to easily interact

with the ECUs supporting CANopen and simplify design process of the CAN network.

Setting up the parameters of a Sevcon Gen4 (see the Sevcon Gen4 manual [27]) is done

2Tesla Motors Club: http://www.teslamotorsclub.com/

http://www.teslamotorsclub.com/

Chapter 4. Renault Twizy 24

Table 4.1: Access Levels

Sevcon Gen4 Access Level Usage
1 User (Default)
2 Service Engineer
3 Dealer
4 OEM Engineering
5 Sevcon Engineering

by reading and writing the values associated to the objects, this is done through SDOs.

Gen4 specifies 5 different access levels that prevents manipulating some objects without

the correct level of authentication.

The tools commonly used for this purpose are either a proprietary software on a com-

puter, or a professional hand-held device. Nevertheless, with a good understanding

of the CANopen protocol, the process can be done manually, we only need to follow

CANopen standard and the right passcode. There are 5 levels of accessibility, and each

have different login credentials. The access levels are listed in the Table 4.1. In the

initial state, the user is not authenticated, and can only access a very limited set of

objects. The higher the access level, the more objects can be manipulated (i.e. the con-

figuration changes). Based on our observations, Level 2 gives much higher access over

level 1 but surprisingly there is no Object with access level of 3 which, means in practice

there is no difference between level 2 and 3 in Sevcon Gen4. Access Level of 4 (Original

Equipment Manufacturer (OEM) Engineering) allows access to all except a few objects,

particularly to the exception of the reset switches of internal logs. The authentication

can be done by sending the passcode to the object at index 0x5000, sub-index 2. And

current authentication level can be read from index 0x5000 sub-index 1. As a result,

anyone with the right passcode can access to the whole OD of a Sevcon Gen4.

4.3.1 Brute-Force Attack

To be able to freely reconfigure the Sevcon Gen4 one needs to obtain the right passcode

preferably for a high access level (e.g., 4 or 5). Like every other authentication systems

when it comes to finding a passcode, brute-forcing is the simplest way of approaching

the problem. However, while being easy to perform, it is only practical when applied

to short passcodes. Knowing that the passcode for the Sevcon Gen4 is only 2 bytes

long, this was the preferred approach. We implemented the required routines in the

OVMS controller and the OVMS to try all the 65536 (216) combinations. Then we ran

it against the ECU and it took our brute-forcing routine approximately 11 hours to find

the passcodes for all access levels. Although this was not very fast, but it is practical

enough. In addition we discovered that the main delay was introduced because of the

Chapter 4. Renault Twizy 25

extra delays in the CANopen implementation of the OVMS’ firmware. And a small delay

due to the the link between the OVMS and our brute-forcing routine on the backseat

computer. Moreover we checked for all the access levels in one run, in other words we

tested the passcode space 5 times.

It is important to note that no brute-force prevention mechanism is implemented on

the Sevcon Gen4 controller. Since we only needed to do this once, we did not try to

improve our brute-forcing routine, otherwise there is still room for improvements. Also

an attacker does not need all the passcodes, because only level 5 authentication is enough

to access all the object dictionaries.

4.3.2 Exploits

We studied the technical documents of the Sevcon Gen4 and having obtained the pass-

codes for all the access levels, we defined a number of experiments. We only had access

to one master OD that was not specifically for the Sevcon Gen4 but was a general format

for all Sevcon products. The Master OD is a reference object containing information

about all the dictionaries and their constraints. We read the configuration of the con-

troller to determine what were the parameters in use for the Twizy. We then tried

to modify those parameters one by one to observe what changes they induced in the

behaviour of the vehicle.

There are many parameters to take into account in order to fine tune the motor and

change the behaviour of the system. Here, we present two parameters that allowed us

to make the car move autonomously.

Throttle Control

By default, the Sevcon Gen4 converts the voltage from the throttle pedal position into a

scaled numerical value that controls the power output of the electric motor. By having

access to all parameters of the controller, we can modify the conversion function to alter

the default behavior of the vehicle. As shown in Figure 4.5, we modified the parameters

of the function in order to interpret any input voltage as the numerical value of our

choice. In this example no matter what input voltage (horizontal axis), the output value

for the throttle (vertical axis) is about 70 percent. The default conversion line is drawn

in blue and the modified line is in red. This modification effectively simulates a push on

the throttle pedal and removes the user’s control over the acceleration of the vehicle.

Chapter 4. Renault Twizy 26

Figure 4.5: Throttle conversion function

Table 4.2: Gear State

Forward Reverse Action

0 0 Neutral (No Torque)
0 1 Negative Torque
1 0 Positive Torque
1 1 Unauthorized

Gear State

We identified two Boolean switches that together describe the gear state of the vehicle.

One corresponds to the forward direction and the other to the reverse direction. By

default, those values are set by physical switches next to the steering wheel. Table 4.2

shows the internal logical functions of the Sevcon Gen4 and how they determine the

driving mode of the vehicle (e.g. torque positive, negative or neutral).

By programmatically setting those values, we were able to automatically change the

gear state and as a consequence the driving direction of the vehicle.

Brake

The previously described technique could also be used as the brake. Only by applying

negative torque to the motor, the vehicle will slow down. We used this in our experiments

to stop the vehicle while it remained at low speed, under 30 km/h. This was not tested

at higher speeds because the amount of negative torque would not be sufficient to stop

the car. Another concern is that this method, also called Plug braking, generates a lot

of heat and endangers the operation of the engine [28].

Chapter 4. Renault Twizy 27

Figure 4.6: Web Application

4.3.3 Remote Control

To be able to demonstrate what is practically feasible using this module we decided to

implement the aforementioned exploits directly in the OVMS module. We extensively

modified OVMS’ firmware to incorporate new commands that perform several actions

based on the exploits described in the previous section. To reduce latency and reliabil-

ity issues, we implemented the routines directly on the OVMS. The client applications

(OVMS Controller, Android and Web applications) are solely used to send basic com-

mands and their required parameters. In order to test these newly added commands we

implemented several keyboard short-cuts on the OVMS controller and mapped each of

them to a new command. Therefore we could easily execute the commands and investi-

gate the responses from the Twizy. First we implemented very crucial commands such

as forward and reverse throttle, but soon we extended it to other features such as speed

limit and disabling of the throttle pedal. After successfully testing the routines locally

through the debug port of the OVMS, we did the same remotely. While developing the

remote control we faced sudden connection drops. Therefore we devised a new set of

commands that could guarantee that the car will not indefinitely accelerate and cause

accidents. Table 4.3 shows available command set for remote access.

Chapter 4. Renault Twizy 28

Table 4.3: Remote Command Set

Command Title Command Structure and Parameters

Reset 106, 0
Disable Throttle Pedal 106, 1, [enable, disable]
Continuously Going Forward/Reverse 106, 2, [enable, disable], timeInterval
Go Forward 106, 3, speedLimit, throttle, duration
Go Reverse 106, 4, speedLimit, throttle, duration
Speed Limit 106, 5, [enable, disable], speedLimit
Get State 106, 6

Android and Web Application

Two client applications developed to demonstrate our exploits: An Android mobile

application and a web application. We modified the already existing mobile application

provided by OVMS to include the remote control features that we developed. We also

modified the OVMS firmware in order to accept the custom commands of the client

applications. During development of the remote applications in order to ease up the

process, we prepared a car simulator script on our local server, so we could interact

with it without actually having a car connected to the OVMS. This script is not a real

simulator in fact it just returns some random values in response to each command, just

to have a close loop for testing. The Android application interface is shown in Figure

4.7. The vertical arrows represent the forward and reverse throttle. The application

also can disable the throttle pedal, limit the maximum speed or enable a demo mode

that repetitively moves the car slowly forward and backward. A similar interface is also

available on the Internet through a web browser (See Figure 4.6).

Figure 4.7: Android Application

Chapter 4. Renault Twizy 29

4.4 Attack Scenarios

In order to demonstrate the potential of our system, several attack scenarios are de-

scribed to show some exemplary attacks using the module. We identified the following

attack scenarios:

• Forcing the car to go forward or backward.

• Limiting the speed (e.g. Very low speed on the highway).

• Setting unsafe motor and voltage parameters which, could lead to possible damage

to the engine of the vehicle.

• Randomly changing motor direction.

• Interacting with the dashboard to display false data, tricking the driver into making

dangerous maneuvers.

• Changing or inverting the conversion function of the throttle input.

• Periodically or randomly change the amount of throttle response, effectively ren-

dering the vehicle uncontrollable.

The proposed attack scenarios can either be activated remotely by an attacker or trig-

gered automatically by the module upon any arbitrary events such as speed or the

location information retrieved from the integrated GPS module (e.g. while being in a

predefined area or when the speed is over a certain value).

4.5 Summary

In this chapter we showed how to gain access to motor ECU of the Renault Twizy

using brute-force method. Then we discovered how to control throttle and direction of

the motor, so we can have full control over the powertrain system. Also we developed

an Android and web application to utilise our findings to remotely control the Twizy.

Lastly we presented possible attack scenarios using the uncovered vulnerabilities3.

3The work presented in this chapter was submitted to the ”IEEE GLOBECOM’15 - Wi-UAV Work-
shop” as ”S. Jafarnejad, L. Codeca, W. Bronzi, R. Frank, T. Engel, ”A Car Hacking Experiment: When
Connectivity meets Vulnerability””

Chapter 5

Toyota Prius

5.1 Introduction

In order to expand the range of the attacks we had to get our hands on a car with

sufficient cyber-physical systems. These systems give us the possibility of controlling

safety-critical subsystems such as brake and steering wheel. Fortunately we could lease

a Toyota Prius (Prius) for two months. This short time window gave us the possibility to

take our research to a whole new level. In this chapter first we give a short background

about the Toyota Prius and the tools we used during the experiments. Then we go

through our experimental setup, the experiments we performed and their results. Next,

we present a number of possible attack scenarios and finally we give a summary and

conclude the chapter.

5.2 Experimental Setup

5.2.1 Toyota Prius

For this experiment we used a third generation Toyota Prius that is in production from

2010 to present (August 2015). The Prius is a mid-size full hybrid electric hatchback

manufactured by the Toyota Motor Corporation. It is the first mass produced hybrid

vehicle, the Prius first introduced to the market in Japan in 1997 and later to the world

in 2000. The Prius is currently sold in close to 80 countries and it’s global cumulative

sales reached 3 million in 2013 and 4.8 million by the September 2014.

The Prius is well known for it’s fuel efficiency and low emissions. This vehicle is based

on the Hybrid Synergy Drive (HSD) which is the brand name of a set of hybrid vehicle

30

Chapter 5. Toyota Prius 31

technologies developed by Toyota. The Prius is a drive-by-wire car with no direct me-

chanical connection between the engine and the engine controls. Both of the gas pedal

and the gear shift lever send electrical signals to a control unit. The Hybrid Synergy

Drive (HSD) system replaces a conventional geared transmission with an electromechan-

ical system [29]. This system consits of:

• MG1, an AC motor-generator used as a generator when charging the High Voltage

Battery (HVB) and motor when starting the Internal Combustion Engine (ICE)

• MG2, an AC motor-generator, used as the primary drive motor and as a generator

and its regeneration power goes to the HVB

• Power electronics, including three DC-AC inverters and two DC-DC converters

• Computerised control system and sensors

• High Voltage Battery (HVB), sources electrical energy during acceleration and

sinks electric energy during regeneration braking.

Although there is so much to discuss about advanced features of HSD it does not play

an important role in our project. What is important for us is the data networks and

connections between the ECUs that control the different subsystems of the vehicle.

Wireless Communications

The Prius is equipped with several wireless communication technologies, such as RKE,

Bluetooth, AM/FM/XM Radio. There are some other wireless technologies such as

Telematics and SafetyConnect that are optional and hence not available on every car

of this kind. Since these subsystems share the same bus, and communicate with other

ECUs, their existence increases both the attack surface and the range of possible attacks

by far. Nevertheless in this project our focus is on security of in-vehicle networks, or in

other words local attacks.

ECUs and In-Vehicle Networks

The Prius like every other modern car employs more ECUs each generation to provide

more and more functionalities over time. For instance a Prius made in 2006 has 26 ECUs

while same car as manufactured in 2014 has 40 ECUs [30] which clearly shows more than

50 percent increase in number of the ECU over the course of less than 10 years. The

Prius model 2010 uses three different communication standards, CAN, LIN, AVC-LAN.

Chapter 5. Toyota Prius 32

E
C

M

P
ow

er

M
an

ag
em

en
t

C
on

tro
l E

C
U

*

Tr
an

sm
is

si
on

C

on
tro

l E
C

U

N
av

ig
at

io
n

R
ec

ei
ve

r
A

ss
em

bl
y

M
ai

n
B

od
y

E
C

U

P
ow

er

S
te

er
in

g
E

C
U

C
er

tif
ic

at
io

n
E

C
U

Y
aw

 R
at

e
an

d
A

cc
el

er
at

io
n

S
en

so
r

C
om

bi
na

tio
n

M
et

er

D
LC

3

S
ki

d
C

on
tro

l
E

C
U

S
te

er
in

g
A

ng
le

 S
en

so
r

A
irb

ag
 E

C
U

A

ss
em

bl
y

P
ar

ki
ng

 A
ss

is
t

E
C

U

P
ow

er

M
an

ag
em

en
t

C
on

tro
l E

C
U

*

LI
N

V1
 B

us

D
riv

in
g

S
up

po
rt

E
C

U

La
ne

R

ec
og

ni
tio

n
C

am
er

a

M
ill

im
et

er

W
av

e
S

en
so

r

S
ea

t B
el

t
C

on
tro

l E
C

U V2
 B

us

Pa
rk

in
g

A
ss

is
t B

us

A
ir

C
on

di
tio

ni
ng

A

m
pl

ifi
er

A

ss
em

bl
y

Po
w

er

M
an

ag
em

en
t B

us

F
ig
u
r
e
5
.1
:

T
oy

o
ta

P
ri

u
s

2
0
1
0

C
A

N
b

u
s

E
C

U
s

Chapter 5. Toyota Prius 33

Table 5.1: Different Buses and ECUs using them

LIN Power Windows and Sliding Roof

1 Main Body ECU
2-5 Power Window Regulation Motor Assembly x 4
6 Sliding Roof ECU
7 Multiplex Network Master Switch Assembly
LIN Smart Key System

1 Power Management Control ECU
2 Transmission Control ECU
3 Immobiliser Code ECU
4 Certification ECU
LIN Air Conditioning System

1 Air Conditioning Amplifier Assembly
2 Air Conditioning Control Assembly
LIN Advanced Parking Guidance

1 Parking Assist ECU
2 Ultrasonic Sensor LH
AVC-LAN Multimedia

1 Stereo Component Amplifier Assembly
2 XM Satellite Radio Tuner
3 Navigation Receiver

An overview of ECUs communicating through CAN bus is depicted in Figure 5.1 and a

list of ECU and systems communicating through LIN and AVC-LAN is shown in Table

5.1.

Cyber-Physical Subsystems

In the past few years availability of Cyber-Physical systems has substantially increased,

and the Prius is not an outlier. The Prius supports a number of those systems such

as Intelligent Park Assist (IPA), Pre-Collision System (PCS) and ACC. IPA allows

automatic park in parallel and perpendicular ways. The PCS detects when there is a

high risk of collision and provides brake support and notifies the driver by an alarm

and lastly ACC which, maintains the safe distance and speed by actively controlling the

throttle and brakes. All of the above mentioned systems electronically control certain

safety-critical subsystems, such as throttle, brakes and steering wheel. This means one

can actively change the way they function by taking over certain ECUs.

5.2.2 Interacting with ECUs

Since we were not allowed to dismantle or modify the car, the only way that we could

interact with the CAN bus and perform our experiments was through the OBD port.

Chapter 5. Toyota Prius 34

Figure 5.1 shows an overview of connections between different ECUs of the Prius. In this

figure the OBD port is shown as Data Link Connector 3 (DLC3) that is the more pre-

cisely the name of its connector. We chose ECOM Cable1 from EControls2 as our main

tool to interact with the OBD port. One of the reasons for this choice is that this tool

has been successfully used in the previous works [6, 8]. Therefore we tried to minimise

the risk of incompatibility. ECOM is a high speed CAN to USB converter and pro-

vides APIs to use with almost any programming language that can use DLL. The only

downside of using the ECOM cable is the fact that it is limited to the Windows platform.

Figure 5.2: ECOM Cable Default Harness Schematics

(a) ECOM Cable (b) PCAN-USB Pro

Figure 5.3: ECOM Cable

Since the ECOM cable does not come with the standard OBD port connector we created

our own by tearing apart a bulky ELM237 based Bluetooth OBD dongle and attaching

it to the ECOM’s default harness. The resulting cable is shown in the Figure 5.4. We

also had the chance to use a more advanced and expensive tool called PCAN-USB Pro3.

1ECOM Cable: http://www.cancapture.com/ecom.html
2Econtrols: http://www.econtrols.com
3PCAN-USB Pro: http://www.peak-system.com/PCAN-USB-Pro.200.0.html?&L=1

http://www.cancapture.com/ecom.html
http://www.econtrols.com
http://www.peak-system.com/PCAN-USB-Pro.200.0.html?&L=1

Chapter 5. Toyota Prius 35

Figure 5.4: Our Customized ECOM Cable

This device is made by the PEAK System Technik GmbH4, a company specialised on the

field buses CAN and LIN. PCAN-USB Pro provides two CAN and two LIN interfaces,

it has drivers for both Windows and Linux, as well as a very useful Windows based

software for capture, modify and replay CAN packets.

During the study we plugged in the ECOM cable to the OBD port and secured the

cable on the left side of the driver’s feet position and, performed all the experiments

using a laptop. For safety reasons we performed most of the experiments while the car

is stationary and although for some tests we needed to study behaviour of the car in

different moving conditions we limited ourselves to only some limited manouvers in a

private parking lot.

5.3 Experiments and Results

Our approach to the Prius is totally different from what we did with the Twizy, here

we have no intention of reconfiguring the ECUs instead we want to experience another

type of attacks that are called Replay Attacks. Replay attacks are based on sending

already existing CAN packets in a way to enforce the car to perform an action on our

will. Even though many of these CAN packets and their purpose are already uncovered

by the previous research [8], we are not only interested in visualising some sensor data

or make the car act at our will, instead our goal is to develop a deep understanding of

how it is done and validate, verify and reproduce those findings. Moreover we are more

4PEAK System Technik GmbH: http://www.peak-system.com/Company.58.0.html?&L=1

http://www.peak-system.com/Company.58.0.html?&L=1

Chapter 5. Toyota Prius 36

DLC3

Figure 5.5: Prius Experiments Diagram

interested on the security aspects of it; how these manipulations are done, and how we

can detect or prevent them. First we need to know the purpose of the different CAN

packets and their contents. Basically in order to get information on the CAN packets,

one can take one or more of these 5 different approaches:

• Inspect the CAN bus and look for correlations between events and changes in

packet contents.

• Get access to the manuals from manufacturers.

• Using the Toyota’s propriety diagnostics hardware and software, TechStream5 and

reverse engineer its software and communication protocol.

• By dismantling ECUs one by one it is possible to gain some information like finding

out which IDs correspond to which ECUs

• Having direct access to each ECU gives the possibility of downloading their firmware

and do reverse engineering on the firmware level. This is also possible without di-

rect access and only through the CAN bus, however doing so without previous

knowledge about the ECUs and their flashing protocol is very difficult and also

requires the ECU to be accessible from the OBD port. Such information is possible

to obtain from TechStream.

Most of the hobbyists only use the first method, because all the other approaches de-

mands large spendings or access to confidential information that is not easy to obtain. In

contrast Miller and Valasek in [8] took advantage of almost all of the approaches except

5TechStream: https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti?_pageLabel=

ti_ts_lite&_nfpb=true

https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti?_pageLabel=ti_ts_lite&_nfpb=true
https://techinfo.toyota.com/techInfoPortal/appmanager/t3/ti?_pageLabel=ti_ts_lite&_nfpb=true

Chapter 5. Toyota Prius 37

Table 5.2: An example of CAN packet - Current Speed

ID Length Data

00B4 8 00 00 00 00 91 07 94 E8

having access to manuals from manufacturers. Among all of the above approaches only

the first one was feasible for us and that is what we are going to explore.

5.3.1 CAN Packet Types in the Prius

Before continue further on how to employ security attacks against the Prius we need to

discuss the fundamental characteristics of the CAN packets in the Prius.

Normal Packets

CAN packets at the application layer contain an ID and data. Based on our observations

the Prius does not use extended frame format, therefore the ID field is 11 bit long. And

in addition to the ID there are between 0 to 8 bytes of data. There are methods to use

in order to send data longer than 8 bytes that will be discussed later. Normal packets

are periodically being send on the network by the ECUs, there are also some packets

that are event based. For example we observed while locking/unlocking the doors there

is a specific packet that will be sent during the action. In Table 5.2 you can see a packet

corresponding to current speed of the vehicle, in its data section it contains the speed, a

sequence number and checksum. In this example, 0x91 is the sequence number, 0x0794

is the speed times 100 in kph, and 0xE8 is the checksum.

Checksum - A large number of the CAN messages exchanged in Prius’ CAN bus contain

a checksum, that is located as the last byte of data. Checksum in Prius calculated from

the equation below:

Checksum = (IDhigh + IDlow + Length +

Length−2∑
i=0

Data[i]) mod 256 (5.1)

In equation (5.1) IDlow and IDhigh are low and high byte of our 11 bit ID, Length is

the size of the data section. The computed value for checksum then will be placed in

the last byte of data (Data[Length− 1]). The CAN messages with incorrect checksum

will be ignored by the receiving ECUs [8].

Chapter 5. Toyota Prius 38

Diagnostics Packets

The other category of CAN packets in the Prius are the diagnostics packets. These

packets are normally sent by the diagnostics tools in order to query ECUs status and

test different functionalities. Diagnostics packets normally usually sent by the tools

used in workshop by mechanics. Diagnostics packets typically follow specific standards

however sometimes manufacturers does not respect the standards and implement their

own propriety workaround.

ISO-TP or ISO 15765-2 - Just like the Twizy that uses CANopen as higher OSI layer

protocol, the Toyota Prius uses ISO-TP standard to be able to send data packets over

the CAN bus. The ISO-TP allows transmission of the data packets longer than 8 bytes,

this is possible through breaking down the larger data packets into smaller segments

and adding metadata to them, this way recipient can reassemble the whole data using

the metadata. This metadata in ISO-TP is called Protocol Control Information (PCI)

that is one, two or three bytes. The ISO-TP covers the OSI layers, 3 and 4 (network

and transport layers). The ISO-TP most commonly is used for the transfer of diagnostic

messages with the OBD equipped vehicles using the Keyword Protocol 2000 (KWP2000)

and the Unified Diagnostic Services (UDS), that is exactly how it is used in the Prius.

The ISO-TP also is used broadly in other application-specific CAN implementations.

5.3.2 Data Collection and Processing

We used several approaches in order to find the relation between the packets and their

function. First we used a software called OCTANE6 to sniff the traffic. Then one person

had to perform different actions with the car and a second person pay attention to catch

the values that are changing with that action. For example steering wheel position sensor

and throttle pedal position sensor can easily detected using this method. Later when we

got access to PCAN-USB Pro, we also tried it with the PCAN-View a propriety software

and the Kayak. The Kayak is an application for CAN bus monitoring and visualisation,

that works with devices that support the SocketCan7. The SocketCAN is a CAN driver

and network stack for the Linux kernel developed by the Volkswagen Group, it converts

CAN packets into UDP packets and makes them accessible through UDP sockets.

Although we could learn a lot by just looking at the values and their changes, there

are certain packets that it is not possible to spot through naked eyes. For example

non-frequent and recurring event are among those. Therefore in order to process these

events afterwards, we developed simple software to capture all the traffic on the CAN

6OCTANE: http://octane.gmu.edu
7SocketCAN: https://en.wikipedia.org/wiki/SocketCAN

http://octane.gmu.edu
https://en.wikipedia.org/wiki/SocketCAN

Chapter 5. Toyota Prius 39

bus. Having all the logs it is possible to process the data later and find the correlations

between the events and certain packets.

We tried to use this method to figure out how the ACC works and possibly use its

packets to accelerate and brake. We plotted the speed of the car against different parts

of the ACC packet data. We used the packet 0x00B4 for speed values that is shown

in Figure 5.6 in red. The packet ID corresponding to ACC is 0x0283, it contains two

distinct values that are useful for us. Bytes 2 and 3 form a signed integer which, we

call correction metric and the forth data byte that we name it mode of operation, these

values are drawn in black and blue respectively. In Figure 5.6 it is clear that every

significant decrease of speed results in negative values in mode of operation and every

significant increase of speed is followed by positive values. Mode of operation has a zero

value when ACC is off, mode of operation takes 24 when, ACC is on and there is slight

change of throttle or braking involved, but it always has the value of 84 when the ACC

is significantly applying throttle or brake.

Figure 5.6: ACC Speed Graph

5.3.3 Attacks using Normal Packets

Using the previously described methods we found several attacks that can be carried

out without the use of any diagnostic packets.

False Speed

It is very easy to display any arbitrary value on the instrument cluster of the Prius. All

that is needed is repeatedly sending the corresponding packet with our desired values.

Chapter 5. Toyota Prius 40

ID Length Data

00B4 8 00 00 00 00 CN S1 S2 CS

CN = Counter from 00-FF

S1 = High byte of the speed

S2 = Low byte of the speed

CS = Checksum

This packet has to sent with a higher rate than the original ECU otherwise the value on

the display will keep switching between the false and the real value one. As a side note,

when this packet is used with a variable speed, like starting from 199 and decrement

toward 0. If the rate of change is very fast, similar to what happens in a crash, for

unknown reasons the car thinks that something is wrong with the PCS and you will get

an error message, that will go away only by turning the car off and on again.

This attack can be used in order to trick the driver into driving with higher speeds.

Displaying values smaller than the real speeds, drivers unconsciously try to keep their

usual speed (based on the display). Therefore they drive with higher speeds that leads

to higher driving risks and possibly getting caught on speed cameras.

False Gear State

Very similar to the previous attack one can display any gear shift position and confuse

the driver.

ID Length Data

03BC 8 00 G1 00 00 00 G2 00 00

G1 = 20 for Park, 08 for Neutral, 10 for Reverse, else 00

G2 = 80 for Drive, 02 for B, else 00

Like the fake speed attack these packets also need to be sent faster than the actual ECU.

Braking

Braking is the first action that for which, we can take advantage of the cyber-physical

systems. As we discussed in the Section 5.2.1 the Prius is equipped with the ACC and

the PCS both of these systems have the capability of braking. The PCS when the car

Chapter 5. Toyota Prius 41

is approaching an obstacle and a collision is inevitable. ACC when enabled, regulates

the speed and keeps the safe distance from vehicles in front. The packet responsible has

the ID 0x0283, although we briefly discussed it in Subsection 5.3.2, it is shown below in

details:

ID Length Data

0283 7 CN 00 S1 S2 ST 00 CS

CN = Counter that counts from 00-80

S1 = High byte Speed

S2 = Low byte Speed

ST = Mode of Operation

00 → Normal

24 → Slight speed adjustments

84 → Greater speed adjustments

9C → Forcible speed adjustments (We could not observe this mode, possibly it

activates only by the PCS and since we did not crash the car we missed it)

The S1 and the S2 are in fact two bytes of a 16 bits signed integer that makes our

correction metric. The Positive values of the correction metric increase the speed of the

automobile and negative values decrease the speed by applying the brakes. We tried

sending positive values in order to apply some throttle and increase the speed, but it

did not work at all. We were suspicious that it might only work on speeds higher than

50 kph, but it was not the case. On the contrary while using the negative values for

the correction metric, it works in every speed. Smaller values result in more pressure on

the brakes, and if sent repeatedly it can easily stop the car. This packet does not work

without properly increasing the sequence number. This packet can be used for malicious

purposes in many different ways. The most severe case would be braking abruptly on

the highways. It also can be used to stop the car and do not allow it to move.

Steering

The Toyota Prius comes with optional Intelligent Park Assist System (IPAS). IPAS is

useful because it allows the computer (responsible ECUs) to turn the steering wheel.

This means one can control the steering through compromising the ECU or by spoofing

its packets. Unfortunately the Prius that we used for our experiments was not equipped

with the IPAS, nevertheless after investigations on the CAN bus it turned out that

the ECU responsible for the steering wheel’s servo-motor is available. This means it is

Chapter 5. Toyota Prius 42

possible to turn the steering wheel even if the cars is not equipped with IPAS. Here is

the servo-motor’s ECU packet details:

ID Length Data

0266 8 FA AN 10 01 00 00 FG CS

FA = Flag and Angle (major)

F (High nibble) → Mode indicator

1 → Regular

3 → IPAS Enabled (car must be in reverse for servo to work)

A (Low nibble) → Angle

Carry over from AN will be stored here

AN = The steering wheel angle. Clockwise rotation will decrease this number, but

counter clockwise rotation will increase the number.

FG = Flags.

AC → Auto Park enabled

80 → Regular mode

The maximum wheel angles in this packet are 0xEAA in full clockwise (That is -341 in

one’s complement) and 0x154 in full counter clockwise. Actual degrees of the steering

wheel can be calculated by multiplying this number by 1.5. In order to observe that one

can increase the value till reaching a 360 degree turn in either direction. Then the value

will be hexadecimal for 240 (-240 in counter clockwise). Dividing 360 by 240 gives us

our step size or precision of the stepper-motor which, is 1.5 degrees. Maximum rotation

of steering wheel in either direction is about 510 degrees (0x154 ∗ 1.5 = 510). Knowing

this packet and its contents is not enough to turn the steering wheel. Sending only this

packet is effective only if the car is in reverse otherwise it does not work. To solve this

issue it is needed to trick the car by constantly sending fake gear state data. For which

the following packet becomes handy. This packet is different from one that shows the

gear state on the display.

ID Length Data

0127 8 XX 10 00 ST PD GR CN CS

ST = State of pedals

08 = Acceleration pedal pushed or car idle

0F = Coasting while moving

48 = Car moving (electronic only)

4F = Car braking (also regenerative braking)

Chapter 5. Toyota Prius 43

PD = Car movement

00-80 = Car moving forward

80-FF = Braking or reverse

GR = Gear and Counter

G(High nibble) Current gear

0 → Park

1 → Reverse

2 → Neutral

3 → Drive

4 → Engine brake

R(Low nibble) High nibble of the CN

Counts 0-F

CN = Counter

Counts from 00-FF, carries over to GR’s low nibble

CS = Checksum

Sending these two packets together will solve our problem and steering works in every

gear state. However it will stop working while the speed goes over 5 kph. This is because

of the very simple fact that this system is designed for parking the car and higher speeds

are not needed during the parking process. In order to overcome this limitation it is

also needed to spoof the speed packets with speeds lower than 5 kph. Packets similar to

what described for the false speed can be used here (ID 0x00B4). By sending all these

three packets car assumes that it is in normal conditions for IPAS and steering will work

on arbitrary speeds.

While full range of rotation can be achieved the steering is not responsive and smooth

enough to be suitable for practical control applications.

Steering using LKA

The Prius optionally can be equipped with LKA. The LKA can detect if the car is going

off the lane and in such case applies small corrections to the steering wheel in order to

keep the car in the lane. These corrections are followed by audible beeps to draw the

attention of the driver back to the road. The LKA can be taken advantage of and used

to steer the car. Its packet is shown below:

ID Length Data

02E4 5 CN A1 A2 ST CS

Chapter 5. Toyota Prius 44

CN = Counter that counts 80-FF

A1 = High byte of steering angle

A2 = Low byte of steering angle

ST = State of LKA

00 → Regular

40 → Actively Steering (with beep)

80 → Actively Steering (without beep)

CS = Checksum

The LKA is designed to work on arbitrary speeds. Because it does not need the gear

state and the current speed to be spoofed. Therefore LKA packets are more convenient

to use than IPAS. However there is a downside to it, the corrections or rotations of the

steering wheel (A1A2) should be less than 5 degrees [8]. Steering wheel attacks can be

quite dangerous on high speeds, and if they mixed with sudden brakes they can cause

very severe damages.

5.3.4 Attacks using Diagnostics Packets

Another series of attacks are achieved by intercepting the communication between the

Toyota’s diagnostics software Techstream and the ECUs. Techstream allows the me-

chanics to test a large number of functionalities over different ECUs. From the ABS to

the PCS, Air conditioning and etc.. Since these attacks follow the ISO-TP standard,

CAN packets should structured appropriately. Because we had no access to Toyota’s di-

agnostics software and compatible cables, we could not experience the process of reverse

engineering diagnostics packets, but we employed the findings from Miller and Valasek

[8] to reproduce and implement our attacks.

Seat Belt Tightening

One of the main functions of the PCS is tightening seat belts before an accident happens.

Through Techstream it has made possible to test this feature by sending certain packets:

Driver’s Side

ID Length Data

0781 8 04 30 01 00 01 00 00 00

Passenger’s Side

Chapter 5. Toyota Prius 45

ID Length Data

0781 8 04 30 01 00 02 00 00 00

Both Driver’s and Passenger’s Side

ID Length Data

0781 8 04 30 01 00 03 00 00 00

These packets work at any conditions. This attack maybe can not directly used for ma-

licious purposes but when it is done unexpectedly at high speeds, it can cause dangerous

shakes on the steering wheel, and result in accidents.

Lock/Unlock doors and trunk

Using the diagnostic packets it is possible to lock and unlock doors at any time. However

if passengers are inside, the locking mechanism does not prevent them from unlocking

from inside. Here are the packets:

Unlock Trunk

ID Length Data

0750 8 40 05 30 11 00 00 80 00

Lock all doors

ID Length Data

0750 8 40 05 30 11 00 80 00 00

Unlock all doors

ID Length Data

0750 8 40 05 30 11 00 40 00 00

These packets also work at any condition.

Fuel Gauge

Nothing is worse than running out of gas kilometers away from the closest gas station.

Using the diagnostics packets one can display a wide range of different states for the

fuel gauge. This can be used to trick the driver to stop at a predetermined gas station

or leave them with no gas in the middle of nowhere(Making them believe that the tank

is full while it is not).

Chapter 5. Toyota Prius 46

Fuel Gauge Empty and beeping

ID Length Data

07C0 8 40 30 03 00 01 00 00 00

Fuel Gauge Empty

ID Length Data

07C0 8 40 30 03 00 02 00 00 00

Fuel Gauge 1/4

ID Length Data

07C0 8 40 30 03 00 08 00 00 00

Fuel Gauge 1/2

ID Length Data

07C0 8 40 30 03 00 10 00 00 00

Fuel Gauge 3/4

ID Length Data

07C0 8 40 30 03 00 20 00 00 00

Fuel Gauge Full

ID Length Data

07C0 8 40 30 03 00 40 00 00 00

Gas gauge packets are also possible to send at any time, but they have to sent periodically

otherwise the real state will be shown.

A/C Fan

Fuel Gauge Empty and beeping

ID Length Data

07C0 8 04 30 02 00 FL 00 00 00

FL = Fan Level, Larger values translate to higher speed of Fan, 00-1F

This attack also works under any driving conditions. It does not face the passengers

with any considerable risk, but changing A/C fan speed randomly can be used to scare

the passengers, and when it is in its maximum level, it produces very loud noises.

Chapter 5. Toyota Prius 47

5.4 Attack Scenarios

In contrast to the Twizy for the Prius we did not use the OVMS instead just a CAN to

USB converter (ECOM Cable). However for most attacks it is not difficult to implement

the same functionalities on the OVMS or a similar device that gives us long range access

to the device. The only attack that can be difficult to reproduce using the OVMS will be

the steering. It is difficult because it requires to send false speed and gear shift position

with very fast rate, and steering messages with a fast rate, although this could be hard

to accomplish with a 8 bit PIC micro-controller, but its not impossible. Here we will list

possible attack scenarios using the vulnerabilities mentioned in the previous sections.

• False speeds, can be used to trick the driver into over-speeding.

• In general everything on the instrument panel can be manipulated(e.g. seat belt

indicator, headlights, engine check and more).

• By producing multiple errors on the CAN bus the HSD will be disabled and an

error message asking the driver to stop the car. The car has to sent back to

workshop to fix the error.

• Sudden brakes on high-speeds.

• Continuously applying the brake will not let the car to move at all.

• Steering on high-speeds is significantly dangerous, randomly steering in low-speeds

although is not very dangerous but makes the car unusable.

• Running A/C at maximum speed of fan is not inherently dangerous but it terrifies

passengers. It also drains the battery.

• Fuel gauge manipulations can make the driver end up either without any fuel in

nowhere or filling up your gas tank while it is not empty. Either case it can be

problematic.

Similar to what we had for the Twizy. These attacks can combined or programmed to

triggered by certain actions. In the Prius we have fine grained information about the

car. For example, pedal positions, steering wheel angle, speed, door lock/unlock state,

seat belts in use, and many more. This allows attacker to carefully engineer the attack

and increase its impact.

Chapter 5. Toyota Prius 48

5.5 Summary

In this chapter we presented a summary of our experimental attacks on Toyota Prius.

We discovered how the communications over the CAN bus works. Useful packets have

been reverse engineered and we exploited them in order to control certain safety-critical

subsystems such as, braking and steering, and launch different attacks against the Prius.

Finally we gave an overall view of the vulnerabilities and how they can be used to perform

several attacks against the car and its passengers.

Chapter 6

Discussion

In the Chapters 4 and 5 we presented in detail how it is possible to remote control

a Renault Twizy and compromise safety-critical systems of a Toyota Prius. Although

they both use the CAN bus. We took two completely different approaches for each car

because their system architecture is different and they employ different standards for

communications over CAN bus (The Twizy uses CANopen and the Prius uses ISO-TP).

The Twizy is very simple compare to modern, full size vehicles including the Prius. It

was easy to understand the type of the motor controller used by the Twizy. And since

it is manufactured by a third party vendor, we could find some documentations about it

online. However when we tried to do the same for the Prius, we could not find anything

useful. Because for instance Toyota uses its own propriety system called HSD to control

motors and the hybrid system. And it is very unlikely to find its details online.

The Twizy has the Gen4 as its central controller and everything seems to placed around

it, but in the Prius we are dealing with many ECUs scattered around the vehicle, and

some are hidden behind gateways. In the Twizy, when we gain access to the Gen4, we

get almost full control over the vehicle, and the limitations are mostly because controls

are solely mechanical, for example brake and steering.

In the Twizy we performed re-configuration attacks, which simply means that, we

achieved our goal through re-configuring the ECU, while in the Prius we performed

replay attacks, which means our attacks are based on replaying the packets. Since we

figured out how some of the messages are constructed we were able to structure our own

packets, but it is mostly based on replaying normal packets.

In the rest of this chapter we are going to firstly evaluate the feasibility of the previously

mentioned attacks. Secondly we will explore the extent of the attacks, to see how

important they are for the safety of the passengers and whether or not we should be

49

Chapter 6. Discussion 50

concerned about such attacks. Thirdly we explore a number of methods to prevent such

attacks, and lastly we present possible applications for our work.

6.1 Feasibility Analysis

We demonstrated very serious flaws in the security of two very distinct vehicles on the

market. These attacks are real and dangerous however we need to see how hard it is for

an attacker to perform them.

Since all of our attacks require physically implanting a device into the OBD port, an

attacker has to get physical access to the car. Considering the fact that the Twizy does

not have any door locks nor windows and that the OBD port is freely accessible from

compartments on the dashboard, it is easy for an attacker to install a system such as

the OVMS without the owner noticing. Nonetheless an attacker with enough motivation

will find a way to implant the device in the Prius as well. It is worth mentioning that

the passcode for the Sevcon Gen4 is the same for every Twizy produced in the past

few years, this means no brute-forcing is needed anymore. For both of our cars, it is

important to note that our attacks only work while the car is switched on. Having

the device implemented, an attacker can effectively take over the cars, track them and

perform the above mentioned attacks. The attacker just needs to wait for the driver to

turn the car on to perform the attacks.

We would like to also discuss why an attacker might want to perform attacks on a car.

There are many possible answers to that question, however we will list some of them

and explain whether or not our work covers them:

Car theft Our discoveries do not help the car thieves steal more Twizys or Prii (The

official plural form of the Prius).

Electronic tuning It can be used to electronic tune the Twizy, but not for the Prius,

at least not now.

Sabotage For both cars, the attacker can easily pull off very dangerous attacks. For

the Twizy, dangerous accelerations are feasible, however, the driver can try to stop

the car by pressing the foot brake, which maybe stops the car or reduce a potential

impact, but causes some damage to the motor and other electronics.

In the Prius, the attacker can do a composite attack by intercepting speed mes-

sages, waiting for the moment that speed is very high, then apply steering and

maybe hardly brake at the same time. Even if we neglect the extent of physical

and financial damages, very simple attacks, such as turning on and off the A/C,

lock/unlock the doors in the Prius can be very distressful.

Chapter 6. Discussion 51

Privacy breach A device such as OVMS can constantly report its location data through

the Internet or SMS. Although not activated, with few extra components, it can

also be used to listen to the conversations in the car. However there is no need

to connect the device to the OBD port, we just need to place it somewhere in the

car. On the other hand, while the device is on the OBD port in it can also send

extra information of the car and perform any desired attack just in case.

As we can see there are a broad range of incentives for performing security attacks on the

cars and we believe as connected cars become more prevalent, the risk of being victim

of a security attack will increase.

6.2 Improving Security and Safety

There have been many attempts in solving the security issues in automotive environ-

ments and more specifically on the CAN bus. As presented in Section 3.3 there is no

ultimate solution that mitigates all of the security issues in the automotive environ-

ments.

However there are very simple measures that would have prevented us from performing

our attacks. Let us take the Twizy as an example; Sevcon Gen4 could have prevented

us from brute-forcing the passcode if they had deployed an anti-brute-force mechanism.

In addition, assigning different passcodes to each device could drastically reduce the

portability of our attack. One last issue with the Twizy is that re-configurations in

unsafe conditions (e.g. while moving) are allowed. It should not be possible to change

the ECU configurations while the car is on the move.

The Prius is much better secured in comparison to the Twizy. We received errors and

warnings multiple times while attacking the network. In addition, for safety-critical

functions such as steering some pre-conditions are already in place. However it is also

true that we manage to circumvent them. Only if the vehicle could detect that we are

sending extra packets advertising false gear shift states and brake commands, we would

not be able to accomplish the steering attack.

In the case of local attacks it can be assumed that users are careful enough with their

cars and do not allow anyone to attach any suspicious devices to the OBD port. But

let us take Toyota’s SafetyConnect as an example. This is a subscription-based telem-

atics system by Toyota Motor Corporation and is available in Toyota cars starting from

2009. The system provides several services such as emergency assistance, a stolen vehicle

locator, roadside assistance and automatic collision notification, for which it employs em-

bedded GPS and cellular network technologies. In order to detect collisions it uses data

from the airbag ECU. This system will constantly be connected to the cellular network

Chapter 6. Discussion 52

which increases the range of possible attacks, virtually with no limits, because as long

as there is cell reception, the car is in danger. Such attacks have recently proven pos-

sible on the uConnect telematics system of a Jeep Cherokee by the security researchers

Miller and Valasek [1]. They managed to connect to the telematics system through 4G

connection and by re-flashing the CAN controller they were able to send CAN messages

over the CAN bus and therefore to compromise many safety-critical subsystems of the

vehicle. After publishing the news, GM was forced to issue a patch and to recall 1.4

million vulnerable vehicles.

Although many promising security approaches have already been proposed (Section 3.3),

all of them require a new architecture and are not backward compatible with current

ECUs. This implies most of the current generation cars will inherit the same vulnera-

bilities for the coming years. Therefore it is important to find adequate solutions that

can be conveniently integrated into the current vehicles.

6.3 Non-Security Applications

In this work we demonstrated a number of security vulnerabilities, meanwhile same

issues can be used for some constructive purposes.

Based on what we showed in Chapter 4, we can foresee that using the OVMS bundled

with our improvements, the Twizy can be transformed into an autonomous vehicle

at a reasonable cost. However more equipment is needed to build a fully functional

autonomous vehicle, such as additional sensors (e.g. Lidar) and actuators (e.g. for

braking and steering). In this preliminary work we proved that the power train, which

is the most critical system in a vehicle, can be controlled electronically bringing us one

step forward towards automated driving.

In case of the Prius, achieving the same level of control as in the Twizy is feasible,

nevertheless it will no longer be a very cost effective solution. However since we achieved

a very reliable brake function on the Prius, we can pair it with a vision system and then

it can be used for development and prototyping systems like pedestrian or cyclist alert

systems or any similar application.

Chapter 7

Conclusion

In this experimental work we presented two distinct but closely related projects.

First we presented an experimental platform able to remotely access and interact with

internal systems of a vehicle. This platform is composed of a Renault Twizy 80, an Open

Vehicle Monitoring System and an Android mobile application used as communication

interface. The goal of this work was to remotely control the safety critical systems of

the vehicle. Using the OVMS we accessed and reconfigured the Sevcon Gen4 controller

in order to manipulate the behaviour of the vehicle. We showed that with off the shelf

hardware it is possible to control vital ECU parameters, which allowed us to interact

with the operation mode of the vehicle (e.g. slow down or stop the vehicle, reversing the

gear while moving). By doing this, we noticed a lack of protection mechanisms, which

allowed us to exploit and modify many parameters of the vehicle at runtime (e.g. gear,

throttle, speed limitation, etc.). For demonstration purposes, we implemented a web

interface and an Android mobile application able to interact remotely with the vehicle.

We demonstrated the effects of remotely changing the vehicle’s behaviour in a real life

situation and pointed out the dangers behind such attacks1.

Second we presented several key real life security attacks against the Toyota Prius.

The goal of this work was to explore, exploit and exhibit security vulnerabilities in the

modern vehicles and highlight the significance of the research in this area. Using a CAN

to USB converter (ECOM Cable) we sniffed the CAN bus during certain experiments.

We identified several CAN IDs that were of our interest and reverse engineered their

contents. We used our recently obtained information to craft security attacks against

safety-critical subsystems of the vehicle (e.g. brakes, steering wheel) and performed

experiments to confirm that they function. To demonstrate our work we devised a

number of security attacks (e.g. steering, brake, false speed, lock/unlock doors, etc.)

1This work was submitted to the ”IEEE GLOBECOM’15 - Wi-UAV Workshop” as ”S. Jafarnejad,
L. Codeca, W. Bronzi, R. Frank, T. Engel, ”A Car Hacking Experiment: When Connectivity meets
Vulnerability””

53

Chapter 6. Conclusion 54

and performed them in a controlled situation.

Lastly we compared and analysed the two projects and presented suggestions to improve

the security of the vehicles.

Future Work

During the project we experienced that there is no open-source solution with adequate

features for sniffing and analysing the CAN traffic. There are a number of open-source

tools available but none of them is actively under development nor has enough features.

Such tools will help researchers, instead of spending their resources on developing tools,

put more effort on exploring vulnerabilities. Moreover since wireless connectivity is

getting more and more widespread, and due to the fact that remote attacks do not require

physical access to vehicles; it is very important to perform comprehensive research on

wireless interfaces of vehicles, such as telematics systems.

Bibliography

[1] Hackers Remotely Kill a Jeep on the Highway—With Me in It. URL http://www.

wired.com/2015/07/hackers-remotely-kill-jeep-highway/.

[2] Your BMW or Benz Could Also Be Vulnerable to That

GM OnStar Hack. URL http://www.wired.com/2015/08/

bmw-benz-also-vulnerable-gm-onstar-hack/.

[3] Hack to steal cars with keyless ignition: Volkswagen spent 2 years hiding flaw. URL

http://goo.gl/u93QiX.

[4] Roel Verdult, Flavio D. Garcia, and Baris Ege. Dismantling megamos crypto: Wire-

lessly lockpicking a vehicle immobilizer. In Supplement to the 22nd USENIX Se-

curity Symposium (USENIX Security 13), pages 703–718, Washington, D.C., 2015.

USENIX Association. ISBN 978-1-931971-232. URL https://www.usenix.org/

conference/usenixsecurity15/technical-sessions/presentation/verdult.

[5] Hackers Cut a Corvette’s Brakes Via a Common

Car Gadget. URL http://www.wired.com/2015/08/

hackers-cut-corvettes-brakes-via-common-car-gadget/.

[6] Karl Koscher, Alexei Czeskis, Franziska Roesner, Shwetak Patel, Tadayoshi Kohno,

Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, et al. Experimental security analysis of a modern automobile. In Se-

curity and Privacy (SP), 2010 IEEE Symposium on, pages 447–462. IEEE, 2010.

[7] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav

Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-

dayoshi Kohno, et al. Comprehensive experimental analyses of automotive attack

surfaces. In USENIX Security Symposium, 2011.

[8] Charlie Miller and Chris Valasek. Adventures in automotive networks and control

units. In DEF CON 21 Hacking Conference. Las Vegas, NV: DEF CON, 2013.

[9] The Future of the Automobile. URL http://web.stanford.edu/class/me302/.

55

http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://www.wired.com/2015/08/bmw-benz-also-vulnerable-gm-onstar-hack/
http://www.wired.com/2015/08/bmw-benz-also-vulnerable-gm-onstar-hack/
http://goo.gl/u93QiX
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/verdult
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/verdult
http://www.wired.com/2015/08/hackers-cut-corvettes-brakes-via-common-car-gadget/
http://www.wired.com/2015/08/hackers-cut-corvettes-brakes-via-common-car-gadget/
http://web.stanford.edu/class/me302/

Bibliography 56

[10] This Car Runs on Code. URL http://spectrum.ieee.org/transportation/

systems/this-car-runs-on-code.

[11] Texas Instruments. Introduction to the controller area network (can). Application

Report SLOA101, 2002.

[12] CANopen CAN in Automation. URL http://www.can-cia.org/index.php?id=

canopen.

[13] Continuous Delivery Puts Automotive Software into High

Gear. URL http://electric-cloud.com/blog/2014/12/

continuous-delivery-puts-automotive-software-high-gear/.

[14] LIN Specification 2.2A ISO 17987 Part 1-7.

[15] MOST Cooperation. URL http://www.mostcooperation.com.

[16] FlexRay Specification ISO 17458-1 to 17458-5, .

[17] FlexRay Automotive Communication Bus Overview, . URL http://www.ni.com/

white-paper/3352/en/.

[18] Marko Wolf, André Weimerskirch, and Christof Paar. Security in automotive bus

systems. In Workshop on Embedded Security in Cars, 2004.

[19] Car Tech Trends at the 2015 Consumer Electronics

Show. URL http://www.edmunds.com/car-technology/

car-tech-trends-at-the-2015-consumer-electronics-show.html.

[20] Vehicles May Soon Be Talking to Each Other. URL http://www.voanews.com/

content/vehicles-may-soon-be-talking-to-each-other-/1886895.html.

[21] Ivan Studnia, Vincent Nicomette, Eric Alata, Yves Deswarte, Mohamed Kaâniche,

and Youssef Laarouchi. Survey on security threats and protection mechanisms in

embedded automotive networks. In Dependable Systems and Networks Workshop

(DSN-W), 2013 43rd Annual IEEE/IFIP Conference on, pages 1–12. IEEE, 2013.

[22] Anthony Van Herrewege, Dave Singelee, and Ingrid Verbauwhede. CANAuth-a

simple, backward compatible broadcast authentication protocol for CAN bus. In

ECRYPT Workshop on Lightweight Cryptography 2011, 2011.

[23] Bogdan Groza, Stefan Murvay, Anthony Van Herrewege, and Ingrid Verbauwhede.

Libra-can: a lightweight broadcast authentication protocol for controller area net-

works. In Cryptology and Network Security, pages 185–200. Springer, 2012.

http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://www.can-cia.org/index.php?id=canopen
http://www.can-cia.org/index.php?id=canopen
http://electric-cloud.com/blog/2014/12/continuous-delivery-puts-automotive-software-high-gear/
http://electric-cloud.com/blog/2014/12/continuous-delivery-puts-automotive-software-high-gear/
http://www.mostcooperation.com
http://www.ni.com/white-paper/3352/en/
http://www.ni.com/white-paper/3352/en/
http://www.edmunds.com/car-technology/car-tech-trends-at-the-2015-consumer-electronics-show.html
http://www.edmunds.com/car-technology/car-tech-trends-at-the-2015-consumer-electronics-show.html
http://www.voanews.com/content/vehicles-may-soon-be-talking-to-each-other-/1886895.html
http://www.voanews.com/content/vehicles-may-soon-be-talking-to-each-other-/1886895.html

Bibliography 57

[24] Marko Wolf and Timo Gendrullis. Design, implementation, and evaluation of a

vehicular hardware security module. In Information Security and Cryptology-ICISC

2011, pages 302–318. Springer, 2012.

[25] Open Vehicles Monitoring System. URL https://github.com/openvehicles.

[26] OVMS Protocol Guide, 2013. v2.5.1.

[27] Sevcon Gen4 Applications Reference Manual, 2009. URL http://www.

thunderstruck-ev.com/Manuals/Gen4_Product_Manual_V3.0.pdf. rev 3.0.

[28] Csuk Richard. What is Plug/Dynamic Braking for series motors? ALLTRAX, jan

2007. Technical Note 008.

[29] Hybrid synergy drive, August 2015. URL https://en.wikipedia.org/wiki/

Hybrid_Synergy_Drive.

[30] Charlie Miller and Chris Valasek. A survey of remote automotive attack surfaces.

Black Hat USA, 2014.

https://github.com/openvehicles
http://www.thunderstruck-ev.com/Manuals/Gen4_Product_Manual_V3.0.pdf
http://www.thunderstruck-ev.com/Manuals/Gen4_Product_Manual_V3.0.pdf
https://en.wikipedia.org/wiki/Hybrid_Synergy_Drive
https://en.wikipedia.org/wiki/Hybrid_Synergy_Drive

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Structure of the Thesis

	2 Background
	2.1 Electronic Control Units
	2.2 In-Vehicle Networks
	2.2.1 Controller Area Network
	2.2.2 LIN
	2.2.3 MOST
	2.2.4 FlexRay

	2.3 Cyber-Physical Systems
	2.3.1 Park Assist
	2.3.2 Adaptive Cruise Control
	2.3.3 Collision Prevention
	2.3.4 Lane Keep Assist

	2.4 Vehicular Networks

	3 Related Work
	3.1 Local Attacks
	3.1.1 CAN Security Challenges
	3.1.2 Deviations from Standards
	3.1.3 Attack Methodologies

	3.2 Remote Attacks
	3.3 Counter-Measures Against Security Attacks
	3.4 Summary

	4 Renault Twizy
	4.1 Introduction
	4.2 Experimental Setup
	4.3 Experiments and Results
	4.3.1 Brute-Force Attack
	4.3.2 Exploits
	4.3.3 Remote Control

	4.4 Attack Scenarios
	4.5 Summary

	5 Toyota Prius
	5.1 Introduction
	5.2 Experimental Setup
	5.2.1 Toyota Prius
	5.2.2 Interacting with ECUs

	5.3 Experiments and Results
	5.3.1 CAN Packet Types in the Prius
	5.3.2 Data Collection and Processing
	5.3.3 Attacks using Normal Packets
	5.3.4 Attacks using Diagnostics Packets

	5.4 Attack Scenarios
	5.5 Summary

	6 Discussion
	6.1 Feasibility Analysis
	6.2 Improving Security and Safety
	6.3 Non-Security Applications

	7 Conclusion
	Bibliography

